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Introduction to Autonomous Mobile Robots

Roland Siegwart and Illah R. Nourbakhsh

Mobile robots range from the teleoperated Sojourner on the Mars Pathfinder

mission to cleaning robots in the Paris Metro. Introduction to Autonomous

Mobile Robots offers students and other interested readers an overview of the

technology of mobility—the mechanisms that allow a mobile robot to move

through a real world environment to perform its tasks—including locomotion,

sensing, localization, and motion planning. It discusses all facets of mobile robotics,

including hardware design, wheel design, kinematics analysis, sensors and per-

ception, localization, mapping, and robot control architectures.

The design of any successful robot involves the integration of many different

disciplines, among them kinematics, signal analysis, information theory, artificial

intelligence, and probability theory. Reflecting this, the book presents the tech-

niques and technology that enable mobility in a series of interacting modules.

Each chapter covers a different aspect of mobility, as the book moves from low-

level to high-level details. The first two chapters explore low-level locomotory

ability, examining robots’ wheels and legs and the principles of kinematics. This is

followed by an in-depth view of perception, including descriptions of many “off-

the-shelf” sensors and an analysis of the interpretation of sensed data. The final

two chapters consider the higher-level challenges of localization and cognition,

discussing successful localization strategies, autonomous mapping, and navigation

competence. Bringing together all aspects of mobile robotics into one volume,

Introduction to Autonomous Mobile Robots can serve as a textbook for course-

work or a working tool for beginners in the field.

Roland Siegwart is Professor and Head of the Autonomous Systems Lab at the

Swiss Federal Institute of Technology, Lausanne. Illah R. Nourbakhsh is Associate

Professor of Robotics in the Robotics Institute, School of Computer Science, at

Carnegie Mellon University.

“This book is easy to read and well organized. The idea of providing a robot

functional architecture as an outline of the book, and then explaining each 

component in a chapter, is excellent. I think the authors have achieved their

goals, and that both the beginner and the advanced student will have a clear

idea of how a robot can be endowed with mobility.”

—Raja Chatila, LAAS-CNRS, France
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Preface

Mobile robotics is a young field. Its roots include many engineering and science disci-
plines, from mechanical, electrical and electronics engineering to computer, cognitive and
social sciences. Each of these parent fields has its share of introductory textbooks that
excite and inform prospective students, preparing them for future advanced coursework
and research. Our objective in writing this textbook is to provide mobile robotics with such
a preparatory guide. 

This book presents an introduction to the fundamentals of mobile robotics, spanning the
mechanical, motor, sensory, perceptual and cognitive layers that comprise our field of
study. A collection of workshop proceedings and journal publications could present the
new student with a snapshot of the state of the art in all aspects of mobile robotics. But here
we aim to present a foundation — a formal introduction to the field. The formalism and
analysis herein will prove useful even as the frontier of the state of the art advances due to
the rapid progress in all of mobile robotics' sub-disciplines. 

We hope that this book will empower both the undergraduate and graduate robotics stu-
dent with the background knowledge and analytical tools they will need to evaluate and
even critique mobile robot proposals and artifacts throughout their career. This textbook is
suitable as a whole for introductory mobile robotics coursework at both the undergraduate
and graduate level. Individual chapters such as those on Perception or Kinematics can be
useful as overviews in more focused courses on specific sub-fields of robotics. 

The origins of the this book bridge the Atlantic Ocean. The authors have taught courses
on Mobile Robotics at the undergraduate and graduate level at Stanford University, ETH
Zurich, Carnegie Mellon University and EPFL (Lausanne). Their combined set of curricu-
lum details and lecture notes formed the earliest versions of this text. We have combined
our individual notes, provided overall structure and then test-taught using this textbook for
two additional years before settling on the current, published text. 

For an overview of the organization of the book and summaries of individual chapters,
refer to Section 1.2. 

Finally, for the teacher and the student: we hope that this textbook proves to be a fruitful
launching point for many careers in mobile robotics. That would be the ultimate reward. 





1 Introduction

1.1 Introduction

Robotics has achieved its greatest success to date in the world of industrial manufacturing.
Robot arms, or manipulators, comprise a 2 billion dollar industry. Bolted at its shoulder to
a specific position in the assembly line, the robot arm can move with great speed and accu-
racy to perform repetitive tasks such as spot welding and painting (figure 1.1). In the elec-
tronics industry, manipulators place surface-mounted components with superhuman
precision, making the portable telephone and laptop computer possible.

Yet, for all of their successes, these commercial robots suffer from a fundamental dis-
advantage: lack of mobility. A fixed manipulator has a limited range of motion that depends

Figure 1.1
Picture of auto assembly plant-spot welding robot of KUKA and a parallel robot Delta of SIG Demau-
rex SA (invented at EPFL [140]) during packaging of chocolates. 

© KUKA Inc. © SIG Demaurex SA
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on where it is bolted down. In contrast, a mobile robot would be able to travel throughout
the manufacturing plant, flexibly applying its talents wherever it is most effective. 

This book focuses on the technology of mobility: how can a mobile robot move unsu-
pervised through real-world environments to fulfill its tasks? The first challenge is locomo-
tion itself. How should a mobile robot move, and what is it about a particular locomotion
mechanism that makes it superior to alternative locomotion mechanisms? 

Hostile environments such as Mars trigger even more unusual locomotion mechanisms
(figure 1.2). In dangerous and inhospitable environments, even on Earth, such teleoperated
systems have gained popularity (figures 1.3, 1.4, 1.5, 1.6). In these cases, the low-level
complexities of the robot often make it impossible for a human operator to directly control
its motions. The human performs localization and cognition activities, but relies on the
robot’s control scheme to provide motion control. 

For example, Plustech’s walking robot provides automatic leg coordination while the
human operator chooses an overall direction of travel (figure 1.3). Figure 1.6 depicts an
underwater vehicle that controls six propellers to autonomously stabilize the robot subma-
rine in spite of underwater turbulence and water currents while the operator chooses posi-
tion goals for the submarine to achieve.

Other commercial robots operate not where humans cannot go but rather share space
with humans in human environments (figure 1.7). These robots are compelling not for rea-
sons of mobility but because of their autonomy, and so their ability to maintain a sense of
position and to navigate without human intervention is paramount.

Figure 1.2
The mobile robot Sojourner was used during the Pathfinder mission to explore Mars in summer 1997.
It was almost completely teleoperated from Earth. However, some on-board sensors allowed for
obstacle detection. (http://ranier.oact.hq.nasa.gov/telerobotics_page/telerobotics.shtm). 
© NASA/JPL
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Figure 1.3
Plustech developed the first application-driven walking robot. It is designed to move wood out of the
forest. The leg coordination is automated, but navigation is still done by the human operator on the
robot. (http://www.plustech.fi). © Plustech.

Figure 1.4
Airduct inspection robot featuring a pan-tilt camera with zoom and sensors for automatic inclination
control, wall following, and intersection detection (http://asl.epfl.ch). © Sedirep / EPFL.
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Figure 1.5
Picture of Pioneer, a robot designed to explore the Sarcophagus at Chernobyl. © Wide World Photos. 

Figure 1.6
Picture of recovering MBARI’s ALTEX AUV (autonomous underwater vehicle) onto the Icebreaker
Healy following a dive beneath the Arctic ice. Todd Walsh © 2001 MBARI.
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Figure 1.7
Tour-guide robots are able to interact and present exhibitions in an educational way [48, 118, 132,
143,]. Ten Roboxes have operated during 5 months at the Swiss exhibition EXPO.02, meeting hun-
dreds of thousands of visitors. They were developed by EPFL [132] (http://robotics.epfl.ch) and com-
mercialized by BlueBotics (http://www.bluebotics.ch).

Figure 1.8
Newest generation of the autonomous guided vehicle (AGV) of SWISSLOG used to transport motor
blocks from one assembly station to another. It is guided by an electrical wire installed in the floor.
There are thousands of AGVs transporting products in industry, warehouses, and even hospitals.
© Swisslog.
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Figure 1.9
HELPMATE is a mobile robot used in hospitals for transportation tasks. It has various on-board sen-
sors for autonomous navigation in the corridors. The main sensor for localization is a camera looking
to the ceiling. It can detect the lamps on the ceiling as references, or landmarks (http://
www.pyxis.com). © Pyxis Corp.

front back

Figure 1.10
BR 700 industrial cleaning robot (left) and the RoboCleaner RC 3000 consumer robot developed and
sold by Alfred Kärcher GmbH & Co., Germany. The navigation system of BR 700 is based on a very
sophisticated sonar system and a gyro. The RoboCleaner RC 3000 covers badly soiled areas with a
special driving strategy until it is really clean. Optical sensors measure the degree of pollution of the
aspirated air (http://www.karcher.de). © Alfred Kärcher GmbH & Co.
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Figure 1.11
PIONEER is a modular mobile robot offering various options like a gripper or an on-board camera.
It is equipped with a sophisticated navigation library developed at SRI, Stanford, CA (Reprinted with
permission from ActivMedia Robotics, http://www.MobileRobots.com). 

Figure 1.12
B21 of iRobot is a sophisticated mobile robot with up to three Intel Pentium processors on board. It
has a large variety of sensors for high-performance navigation tasks (http://www.irobot.com/rwi/). 
© iRobot Inc.
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For example, AGV (autonomous guided vehicle) robots (figure 1.8) autonomously
deliver parts between various assembly stations by following special electrical guidewires
using a custom sensor. The Helpmate service robot transports food and medication
throughout hospitals by tracking the position of ceiling lights, which are manually specified
to the robot beforehand (figure 1.9). Several companies have developed autonomous clean-
ing robots, mainly for large buildings (figure 1.10). One such cleaning robot is in use at the
Paris Metro. Other specialized cleaning robots take advantage of the regular geometric pat-
tern of aisles in supermarkets to facilitate the localization and navigation tasks.

Research into high-level questions of cognition, localization, and navigation can be per-
formed using standard research robot platforms that are tuned to the laboratory environ-
ment. This is one of the largest current markets for mobile robots. Various mobile robot
platforms are available for programming, ranging in terms of size and terrain capability.
The most popular research robots are those of ActivMedia Robotics, K-Team SA, and I-
Robot (figures 1.11, 1.12, 1.13) and also very small robots like the Alice from EPFL (Swiss
Federal Institute of Technology at Lausanne) (figure 1.14). 

Although mobile robots have a broad set of applications and markets as summarized
above, there is one fact that is true of virtually every successful mobile robot: its design
involves the integration of many different bodies of knowledge. No mean feat, this makes
mobile robotics as interdisciplinary a field as there can be. To solve locomotion problems,
the mobile roboticist must understand mechanism and kinematics; dynamics and control
theory. To create robust perceptual systems, the mobile roboticist must leverage the fields
of signal analysis and specialized bodies of knowledge such as computer vision to properly

Figure 1.13
KHEPERA is a small mobile robot for research and education. It is only about 60 mm in diameter.
Various additional modules such as cameras and grippers are available. More then 700 units had
already been sold by the end of 1998. KHEPERA is manufactured and distributed by K-Team SA,
Switzerland (http://www.k-team.com). © K-Team SA.
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employ a multitude of sensor technologies. Localization and navigation demand knowl-
edge of computer algorithms, information theory, artificial intelligence, and probability
theory.

Figure 1.15 depicts an abstract control scheme for mobile robot systems that we will use
throughout this text. This figure identifies many of the main bodies of knowledge associ-
ated with mobile robotics.

This book provides an introduction to all aspects of mobile robotics, including software
and hardware design considerations, related technologies, and algorithmic techniques. The
intended audience is broad, including both undergraduate and graduate students in intro-
ductory mobile robotics courses, as well as individuals fascinated by the field. While not
absolutely required, a familiarity with matrix algebra, calculus, probability theory, and
computer programming will significantly enhance the reader’s experience.

Mobile robotics is a large field, and this book focuses not on robotics in general, nor on
mobile robot applications, but rather on mobility itself. From mechanism and perception to
localization and navigation, this book focuses on the techniques and technologies that
enable robust mobility.

Clearly, a useful, commercially viable mobile robot does more than just move. It pol-
ishes the supermarket floor, keeps guard in a factory, mows the golf course, provides tours
in a museum, or provides guidance in a supermarket. The aspiring mobile roboticist will
start with this book, but quickly graduate to course work and research specific to the desired
application, integrating techniques from fields as disparate as human-robot interaction,
computer vision, and speech understanding.

Figure 1.14
Alice is one of the smallest fully autonomous robots. It is approximately 2 x 2 x 2 cm, it has an auton-
omy of about 8 hours and uses infrared distance sensors, tactile whiskers, or even a small camera for
navigation [54]. 
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1.2 An Overview of the Book

This book introduces the different aspects of a robot in modules, much like the modules
shown in figure 1.15. Chapters 2 and 3 focus on the robot’s low-level locomotive ability.
Chapter 4 presents an in-depth view of perception. Then, Chapters 5 and 6 take us to the
higher-level challenges of localization and even higher-level cognition, specifically the
ability to navigate robustly. Each chapter builds upon previous chapters, and so the reader
is encouraged to start at the beginning, even if their interest is primarily at the high level.
Robotics is peculiar in that solutions to high-level challenges are most meaningful only in
the context of a solid understanding of the low-level details of the system.

Chapter 2, “Locomotion”, begins with a survey of the most popular mechanisms that
enable locomotion: wheels and legs. Numerous robotic examples demonstrate the particu-

Figure 1.15
Reference control scheme for mobile robot systems used throughout this book.
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lar talents of each form of locomotion. But designing a robot’s locomotive system properly
requires the ability to evaluate its overall motion capabilities quantitatively. Chapter 3,
“Mobile Robot Kinematics”, applies principles of kinematics to the whole robot, beginning
with the kinematic contribution of each wheel and graduating to an analysis of robot
maneuverability enabled by each mobility mechanism configuration.

The greatest single shortcoming in conventional mobile robotics is, without doubt, per-
ception: mobile robots can travel across much of earth’s man-made surfaces, but they
cannot perceive the world nearly as well as humans and other animals. Chapter 4, “Percep-
tion”, begins a discussion of this challenge by presenting a clear language for describing
the performance envelope of mobile robot sensors. With this language in hand, chapter 4
goes on to present many of the off-the-shelf sensors available to the mobile roboticist,
describing their basic principles of operation as well as their performance limitations. The
most promising sensor for the future of mobile robotics is vision, and chapter 4 includes an
overview of the theory of operation and the limitations of both charged coupled device
(CCD) and complementary metal oxide semiconductor (CMOS) sensors.

But perception is more than sensing. Perception is also the interpretation of sensed data
in meaningful ways. The second half of chapter 4 describes strategies for feature extraction
that have been most useful in mobile robotics applications, including extraction of geomet-
ric shapes from range-based sensing data, as well as landmark and whole-image analysis
using vision-based sensing.

Armed with locomotion mechanisms and outfitted with hardware and software for per-
ception, the mobile robot can move and perceive the world. The first point at which mobil-
ity and sensing must meet is localization: mobile robots often need to maintain a sense of
position. Chapter 5, “Mobile Robot Localization”, describes approaches that obviate the
need for direct localization, then delves into fundamental ingredients of successful local-
ization strategies: belief representation and map representation. Case studies demonstrate
various localization schemes, including both Markov localization and Kalman filter local-
ization. The final part of chapter 5 is devoted to a discussion of the challenges and most
promising techniques for mobile robots to autonomously map their surroundings.

Mobile robotics is so young a discipline that it lacks a standardized architecture. There
is as yet no established robot operating system. But the question of architecture is of para-
mount importance when one chooses to address the higher-level competences of a mobile
robot: how does a mobile robot navigate robustly from place to place, interpreting data,
localizing and controlling its motion all the while? For this highest level of robot compe-
tence, which we term navigation competence, there are numerous mobile robots that show-
case particular architectural strategies. Chapter 6, “Planning and Navigation”, surveys the
state of the art of robot navigation, showing that today’s various techniques are quite sim-
ilar, differing primarily in the manner in which they decompose the problem of robot con-
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trol. But first, chapter 6 addresses two skills that a competent, navigating robot usually must
demonstrate: obstacle avoidance and path planning.

There is far more to know about the cross-disciplinary field of mobile robotics than can
be contained in a single book. We hope, though, that this broad introduction will place the
reader in the context of mobile robotics’ collective wisdom. This is only the beginning, but,
with luck, the first robot you program or build will have only good things to say about you.



2 Locomotion

2.1 Introduction

A mobile robot needs locomotion mechanisms that enable it to move unbounded through-
out its environment. But there are a large variety of possible ways to move, and so the selec-
tion of a robot’s approach to locomotion is an important aspect of mobile robot design. In
the laboratory, there are research robots that can walk, jump, run, slide, skate, swim, fly,
and, of course, roll. Most of these locomotion mechanisms have been inspired by their bio-
logical counterparts (see figure 2.1). 

There is, however, one exception: the actively powered wheel is a human invention that
achieves extremely high efficiency on flat ground. This mechanism is not completely for-
eign to biological systems. Our bipedal walking system can be approximated by a rolling
polygon, with sides equal in length  to the span of the step (figure 2.2). As the step size
decreases, the polygon approaches a circle or wheel. But nature did not develop a fully
rotating, actively powered joint, which is the technology necessary for wheeled locomo-
tion.

Biological systems succeed in moving through a wide variety of harsh environments.
Therefore it can be desirable to copy their selection of locomotion mechanisms. However,
replicating nature in this regard is extremely difficult for several reasons. To begin with,
mechanical complexity is easily achieved in biological systems through structural replica-
tion. Cell division, in combination with specialization, can readily produce a millipede with
several hundred legs and several tens of thousands of individually sensed cilia. In man-
made structures, each part must be fabricated individually, and so no such economies of
scale exist. Additionally, the cell is a microscopic building block that enables extreme min-
iaturization. With very small size and weight, insects achieve a level of robustness that we
have not been able to match with human fabrication techniques. Finally, the biological
energy storage system and the muscular and hydraulic activation systems used by large ani-
mals and insects achieve torque, response time, and conversion efficiencies that far exceed
similarly scaled man-made systems. 

d
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Owing to these limitations, mobile robots generally locomote either using wheeled
mechanisms, a well-known human technology for vehicles, or using a small number of
articulated legs, the simplest of the biological approaches to locomotion (see figure 2.2). 

In general, legged locomotion requires higher degrees of freedom and therefore greater
mechanical complexity than wheeled locomotion. Wheels, in addition to being simple, are
extremely well suited to flat ground. As figure 2.3 depicts, on flat surfaces wheeled loco-
motion is one to two orders of magnitude more efficient than legged locomotion. The rail-
way is ideally engineered for wheeled locomotion because rolling friction is minimized on
a hard and flat steel surface. But as the surface becomes soft, wheeled locomotion accumu-
lates inefficiencies due to rolling friction whereas legged locomotion suffers much less
because it consists only of point contacts with the ground. This is demonstrated in figure
2.3 by the dramatic loss of efficiency in the case of a tire on soft ground.

Figure 2.1
Locomotion mechanisms used in biological systems.
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Figure 2.2
A biped walking system can be approximated by a rolling polygon, with sides equal in length d to the
span of the step. As the step size decreases, the polygon approaches a circle or wheel with the radius l.
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Figure 2.3
Specific power versus attainable speed of various locomotion mechanisms [33].
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In effect, the efficiency of wheeled locomotion depends greatly on environmental qual-
ities, particularly the flatness and hardness of the ground, while the efficiency of legged
locomotion depends on the leg mass and body mass, both of which the robot must support
at various points in a legged gait.

It is understandable therefore that nature favors legged locomotion, since locomotion
systems in nature must operate on rough and unstructured terrain. For example, in the case
of insects in a forest the vertical variation in ground height is often an order of magnitude
greater than the total height of the insect. By the same token, the human environment fre-
quently consists of engineered, smooth surfaces, both indoors and outdoors. Therefore, it
is also understandable that virtually all industrial applications of mobile robotics utilize
some form of wheeled locomotion. Recently, for more natural outdoor environments, there
has been some progress toward hybrid and legged industrial robots such as the forestry
robot shown in figure 2.4. 

In the section 2.1.1, we present general considerations that concern all forms of mobile
robot locomotion. Following this, in sections 2.2 and 2.3, we present overviews of legged
locomotion and wheeled locomotion techniques for mobile robots. 

2.1.1   Key issues for locomotion
Locomotion is the complement of manipulation. In manipulation, the robot arm is fixed but
moves objects in the workspace by imparting force to them. In locomotion, the environ-
ment is fixed and the robot moves by imparting force to the environment. In both cases, the
scientific basis is the study of actuators that generate interaction forces, and mechanisms

Figure 2.4
RoboTrac, a hybrid wheel-leg vehicle for rough terrain [130].
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that implement desired kinematic and dynamic properties. Locomotion and manipulation
thus share the same core issues of stability, contact characteristics, and environmental type: 

• stability 
- number and geometry of contact points
- center of gravity
- static/dynamic stability
- inclination of terrain

• characteristics of contact 
- contact point/path size and shape
- angle of contact
- friction

• type of environment 
- structure
- medium, (e.g. water, air, soft or hard ground)

A theoretical analysis of locomotion begins with mechanics and physics. From this start-
ing point, we can formally define and analyze all manner of mobile robot locomotion sys-
tems. However, this book focuses on the mobile robot navigation problem, particularly
stressing perception, localization, and cognition. Thus we will not delve deeply into the
physical basis of locomotion. Nevertheless, the two remaining sections in this chapter
present overviews of issues in legged locomotion [33] and wheeled locomotion. Then,
chapter 3 presents a more detailed analysis of the kinematics and control of wheeled mobile
robots.

2.2 Legged Mobile Robots

Legged locomotion is characterized by a series of point contacts between the robot and the
ground. The key advantages include adaptability and maneuverability in rough terrain.
Because only a set of point contacts is required, the quality of the ground between those
points does not matter so long as the robot can maintain adequate ground clearance. In addi-
tion, a walking robot is capable of crossing a hole or chasm so long as its reach exceeds the
width of the hole. A final advantage of legged locomotion is the potential to manipulate
objects in the environment with great skill. An excellent insect example, the dung beetle, is
capable of rolling a ball while locomoting by way of its dexterous front legs.

The main disadvantages of legged locomotion include power and mechanical complex-
ity. The leg, which may include several degrees of freedom, must be capable of sustaining
part of the robot’s total weight, and in many robots must be capable of lifting and lowering
the robot. Additionally, high maneuverability will only be achieved if the legs have a suf-
ficient number of degrees of freedom to impart forces in a number of different directions.
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2.2.1   Leg configurations and stability
Because legged robots are biologically inspired, it is instructive to examine biologically
successful legged systems. A number of different leg configurations have been successful
in a variety of organisms (figure 2.5). Large animals, such as mammals and reptiles, have
four legs, whereas insects have six or more legs. In some mammals, the ability to walk on
only two legs has been perfected. Especially in the case of humans, balance has progressed
to the point that we can even jump with one leg1. This exceptional maneuverability comes
at a price: much more complex active control to maintain balance. 

In contrast, a creature with three legs can exhibit a static, stable pose provided that it can
ensure that its center of gravity is within the tripod of ground contact. Static stability, dem-
onstrated by a three-legged stool, means that balance is maintained with no need for
motion. A small deviation from stability (e.g., gently pushing the stool) is passively cor-
rected toward the stable pose when the upsetting force stops.

But a robot must be able to lift its legs in order to walk. In order to achieve static walk-
ing, a robot must have at least six legs. In such a configuration, it is possible to design a gait
in which a statically stable tripod of legs is in contact with the ground at all times (figure
2.8).

Insects and spiders are immediately able to walk when born. For them, the problem of
balance during walking is relatively simple. Mammals, with four legs, cannot achieve static
walking, but are able to stand easily on four legs. Fauns, for example, spend several minutes
attempting to stand before they are able to do so, then spend several more minutes learning
to walk without falling. Humans, with two legs, cannot even stand in one place with static
stability. Infants require months to stand and walk, and even longer to learn to jump, run,
and stand on one leg.

1. In child development, one of the tests used to determine if the child is acquiring advanced loco-
motion skills is the ability to jump on one leg.

Figure 2.5
Arrangement of the legs of various animals.

mammals     reptiles insects
     two or four legs    four legs six legs
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There is also the potential for great variety in the complexity of each individual leg.
Once again, the biological world provides ample examples at both extremes. For instance,
in the case of the caterpillar, each leg is extended using hydraulic pressure by constricting
the body cavity and forcing an increase in pressure, and each leg is retracted longitudinally
by relaxing the hydraulic pressure, then activating a single tensile muscle that pulls the leg
in toward the body. Each leg has only a single degree of freedom, which is oriented longi-
tudinally along the leg. Forward locomotion depends on the hydraulic pressure in the body,
which extends the distance between pairs of legs. The caterpillar leg is therefore mechani-
cally very simple, using a minimal number of extrinsic muscles to achieve complex overall
locomotion.

At the other extreme, the human leg has more than seven major degrees of freedom,
combined with further actuation at the toes. More than fifteen muscle groups actuate eight
complex joints.

In the case of legged mobile robots, a minimum of two degrees of freedom is generally
required to move a leg forward by lifting the leg and swinging it forward. More common is
the addition of a third degree of freedom for more complex maneuvers, resulting in legs
such as those shown in figure 2.6. Recent successes in the creation of bipedal walking
robots have added a fourth degree of freedom at the ankle joint. The ankle enables more
consistent ground contact by actuating the pose of the sole of the foot.

In general, adding degrees of freedom to a robot leg increases the maneuverability of the
robot, both augmenting the range of terrains on which it can travel and the ability of the
robot to travel with a variety of gaits. The primary disadvantages of additional joints and
actuators are, of course, energy, control, and mass. Additional actuators require energy and
control, and they also add to leg mass, further increasing power and load requirements on
existing actuators.

Figure 2.6
Two examples of legs with three degrees of freedom.
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In the case of a multilegged mobile robot, there is the issue of leg coordination for loco-
motion, or gait control. The number of possible gaits depends on the number of legs [33].
The gait is a sequence of lift and release events for the individual legs. For a mobile robot
with  legs, the total number of possible events  for a walking machine is 

 (2.1)

For a biped walker  legs, the number of possible events  is

 (2.2)

k N

Figure 2.7
Two gaits with four legs. Because this robot has fewer than six legs, static walking is not generally
possible.
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The six different events are

1. lift right leg;

2. lift left leg;

3. release right leg;

4. release left leg;

5. lift both legs together;

6. release both legs together.

Of course, this quickly grows quite large. For example, a robot with six legs has far more
gaits theoretically:

 (2.3)

Figures 2.7 and 2.8 depict several four-legged gaits and the static six-legged tripod gait.

2.2.2   Examples of legged robot locomotion
Although there are no high-volume industrial applications to date, legged locomotion is an
important area of long-term research. Several interesting designs are presented below,
beginning with the one-legged robot and finishing with six-legged robots. For a very good
overview of climbing and walking robots, see http://www.uwe.ac.uk/clawar/.

2.2.2.1   One leg 
The minimum number of legs a legged robot can have is, of course, one. Minimizing the
number of legs is beneficial for several reasons. Body mass is particularly important to
walking machines, and the single leg minimizes cumulative leg mass. Leg coordination is
required when a robot has several legs, but with one leg no such coordination is needed.
Perhaps most importantly, the one-legged robot maximizes the basic advantage of legged
locomotion: legs have single points of contact with the ground in lieu of an entire track, as
with wheels. A single-legged robot requires only a sequence of single contacts, making it
amenable to the roughest terrain. Furthermore, a hopping robot can dynamically cross a gap
that is larger than its stride by taking a running start, whereas a multilegged walking robot
that cannot run is limited to crossing gaps that are as large as its reach.

The major challenge in creating a single-legged robot is balance. For a robot with one
leg, static walking is not only impossible but static stability when stationary is also impos-
sible. The robot must actively balance itself by either changing its center of gravity or by
imparting corrective forces. Thus, the successful single-legged robot must be dynamically
stable.

N 11! 39916800= =
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Figure 2.9 shows the Raibert hopper [28, 124], one of the most well-known single-
legged hopping robots created. This robot makes continuous corrections to body attitude
and to robot velocity by adjusting the leg angle with respect to the body. The actuation is
hydraulic, including high-power longitudinal extension of the leg during stance to hop back
into the air. Although powerful, these actuators require a large, off-board hydraulic pump
to be connected to the robot at all times.

Figure 2.10 shows a more energy-efficient design developed more recently [46]. Instead
of supplying power by means of an off-board hydraulic pump, the bow leg hopper is
designed to capture the kinetic energy of the robot as it lands, using an efficient bow spring
leg. This spring returns approximately 85% of the energy, meaning that stable hopping
requires only the addition of 15% of the required energy on each hop. This robot, which is
constrained along one axis by a boom, has demonstrated continuous hopping for 20 minutes
using a single set of batteries carried on board the robot. As with the Raibert hopper, the
bow leg hopper controls velocity by changing the angle of the leg to the body at the hip
joint.

Figure 2.8
Static walking with six legs. A tripod formed by three legs always exists.
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Figure 2.9
The Raibert hopper [28, 124]. Image courtesy of the LegLab and Marc Raibert. © 1983.

Figure 2.10
The 2D single bow leg hopper [46]. Image courtesy of H. Benjamin Brown and Garth Zeglin, CMU.
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The paper of Ringrose [125] demonstrates the very important duality of mechanics and
controls as applied to a single-legged hopping machine. Often clever mechanical design
can perform the same operations as complex active control circuitry. In this robot, the phys-
ical shape of the foot is exactly the right curve so that when the robot lands without being
perfectly vertical, the proper corrective force is provided from the impact, making the robot
vertical by the next landing. This robot is dynamically stable, and is furthermore passive.
The correction is provided by physical interactions between the robot and its environment,
with no computer or any active control in the loop.

2.2.2.2   Two legs (biped)
A variety of successful bipedal robots have been demonstrated over the past ten years. Two
legged robots have been shown to run, jump, travel up and down stairways, and even do
aerial tricks such as somersaults. In the commercial sector, both Honda and Sony have
made significant advances over the past decade that have enabled highly capable bipedal
robots. Both companies designed small, powered joints that achieve power-to-weight per-
formance unheard of in commercially available servomotors. These new “intelligent”
servos provide not only strong actuation but also compliant actuation by means of torque
sensing and closed-loop control. 

Figure 2.11
The Sony SDR-4X II, © 2003 Sony Corporation.

Specifications:

Weight: 7 kg
Height: 58 cm
Neck DOF: 4
Body DOF: 2
Arm DOF: 2 x 5 
Legs DOF: 2 x 6 
Five-finger Hands
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The Sony Dream Robot, model SDR-4X II, is shown in figure 2.11. This current model
is the result of research begun in 1997 with the basic objective of motion entertainment and
communication entertainment (i.e., dancing and singing). This robot with thirty-eight
degrees of freedom has seven microphones for fine localization of sound, image-based
person recognition, on-board miniature stereo depth-map reconstruction, and limited
speech recognition. Given the goal of fluid and entertaining motion, Sony spent consider-
able effort designing a motion prototyping application system to enable their engineers to
script dances in a straightforward manner. Note that the SDR-4X II is relatively small,
standing at 58 cm and weighing only 6.5 kg.

The Honda humanoid project has a significant history but, again, has tackled the very
important engineering challenge of actuation. Figure 2.12 shows model P2, which is an
immediate predecessor to the most recent Asimo model (advanced step in innovative
mobility). Note from this picture that the Honda humanoid is much larger than the SDR-
4X at 120 cm tall and 52 kg. This enables practical mobility in the human world of stairs
and ledges while maintaining a nonthreatening size and posture. Perhaps the first robot to
famously demonstrate biomimetic bipedal stair climbing and descending, these Honda
humanoid series robots are being designed not for entertainment purposes but as human
aids throughout society. Honda refers, for instance, to the height of Asimo as the minimum
height which enables it to nonetheless manage operation of the human world, for instance,
control of light switches.

Figure 2.12
The humanoid robot P2 from Honda, Japan. © Honda Motor Corporation.

Specifications:

Maximum speed: 2 km/h
Autonomy: 15 min
Weight: 210 kg
Height: 1.82 m
Leg DOF: 2 x 6
Arm DOF: 2 x 7
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An important feature of bipedal robots is their anthropomorphic shape. They can be built
to have the same approximate dimensions as humans, and this makes them excellent vehi-
cles for research in human-robot interaction. WABIAN is a robot built at Waseda Univer-
sities Japan (figure 2.13) for just such research [75]. WABIAN is designed to emulate
human motion, and is even designed to dance like a human.

Bipedal robots can only be statically stable within some limits, and so robots such as P2
and WABIAN generally must perform continuous balance-correcting servoing even when
standing still. Furthermore, each leg must have sufficient capacity to support the full weight
of the robot. In the case of four-legged robots, the balance problem is facilitated along with
the load requirements of each leg. An elegant design of a biped robot is the Spring Fla-
mingo of MIT (figure 2.14). This robot inserts springs in series with the leg actuators to
achieve a more elastic gait. Combined with “kneecaps” that limit knee joint angles, the Fla-
mingo achieves surprisingly biomimetic motion.

2.2.2.3   Four legs (quadruped)
Although standing still on four legs is passively stable, walking remains challenging
because to remain stable the robot’s center of gravity must be actively shifted during the

Figure 2.13
The humanoid robot WABIAN-RIII at Waseda University in Japan [75]. Image courtesy of Atsuo
Takanishi, Waseda University.

Specifications:

Weight:  131 [kg]
Height: 1.88 [m]

DOF in total:  43
Lower Limbs: 2 x 6
Trunk: 3
Arms: 2 x 10
Neck: 4
Eyes: 2 x 2
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gait. Sony recently invested several million dollars to develop a four-legged robot called
AIBO (figure 2.15). To create this robot, Sony produced both a new robot operating system
that is near real-time and new geared servomotors that are of sufficiently high torque to sup-
port the robot, yet back drivable for safety. In addition to developing custom motors and
software, Sony incorporated a color vision system that enables AIBO to chase a brightly
colored ball. The robot is able to function for at most one hour before requiring recharging.
Early sales of the robot have been very strong, with more than 60,000 units sold in the first
year. Nevertheless, the number of motors and the technology investment behind this robot
dog resulted in a very high price of approximately $1500.

Four-legged robots have the potential to serve as effective artifacts for research in
human-robot interaction (figure 2.16). Humans can treat the Sony robot, for example, as a
pet and might develop an emotional relationship similar to that between man and dog. Fur-
thermore, Sony has designed AIBO’s walking style and general behavior to emulate learn-
ing and maturation, resulting in dynamic behavior over time that is more interesting for the
owner who can track the changing behavior. As the challenges of high energy storage and
motor technology are solved, it is likely that quadruped robots much more capable than
AIBO will become common throughout the human environment.

2.2.2.4   Six legs (hexapod)
Six-legged configurations have been extremely popular in mobile robotics because of their
static stability during walking, thus reducing the control complexity (figures 2.17 and 1.3).

Figure 2.14
The Spring Flamingo developed at MIT [123]. Image courtesy of   Jerry Pratt, MIT Leg Laboratory.
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In most cases, each leg has three degrees of freedom, including hip flexion, knee flexion,
and hip abduction (see figure 2.6). Genghis is a commercially available hobby robot that
has six legs, each of which has two degrees of freedom provided by hobby servos (figure
2.18). Such a robot, which consists only of hip flexion and hip abduction, has less maneu-
verability in rough terrain but performs quite well on flat ground. Because it consists of a
straightforward arrangement of servomotors and straight legs, such robots can be readily
built by a robot hobbyist.

Insects, which are arguably the most successful locomoting creatures on earth, excel at
traversing all forms of terrain with six legs, even upside down. Currently, the gap between
the capabilities of six-legged insects and artificial six-legged robots is still quite large.
Interestingly, this is not due to a lack of sufficient numbers of degrees of freedom on the
robots. Rather, insects combine a small number of active degrees of freedom with passive

Figure 2.15
AIBO, the artificial dog from Sony, Japan.

1 Stereo microphone: Allows AIBO to pick
up surrounding sounds.

2 Head sensor: Senses when a person taps or
pets AIBO on the head.

3 Mode indicator: Shows AIBO’s operation
mode.

4 Eye lights: These light up in blue-green or
red to indicate AIBO’s emotional state.

5 Color camera: Allows AIBO to search for
objects and recognize them by color and
movement.

6 Speaker: Emits various musical tones and
sound effects.

7 Chin sensor: Senses when a person touches
AIBO on the chin.

8 Pause button: Press to activate AIBO or to
pause AIBO.

9 Chest light: Gives information about the
status of the robot.

10 Paw sensors: Located on the bottom of each
paw.

11 Tail light: Lights up blue or orange to show
AIBO’s emotional state.

12 Back sensor: Senses when a person touches
AIBO on the back.E
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Figure 2.16
Titan VIII, a quadruped robot developed at Tokyo Institute of Technology.
(http://mozu.mes.titech.ac.jp/research/walk/). © Tokyo Institute of Technology.

Specifications:

Weight:1 9 kg
Height: 0.25 m
DOF: 4 x 3

Figure 2.17
Lauron II, a hexapod platform developed at the University of Karlsruhe, Germany. 
© University of Karlsruhe.

Specifications:

Maximum speed: 0.5 m/s
Weight:1 6 kg
Height: 0.3 m
Length: 0.7 m
No. of legs: 6
DOF in total: 6 x 3
Power consumption:10 W
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structures, such as microscopic barbs and textured pads, that increase the gripping strength
of each leg significantly. Robotic research into such passive tip structures has only recently
begun. For example, a research group is attempting to re-create the complete mechanical
function of the cockroach leg [65].

It is clear from the above examples that legged robots have much progress to make
before they are competitive with their biological equivalents. Nevertheless, significant
gains have been realized recently, primarily due to advances in motor design. Creating
actuation systems that approach the efficiency of animal muscles remains far from the
reach of robotics, as does energy storage with the energy densities found in organic life
forms.

2.3 Wheeled Mobile Robots

The wheel has been by far the most popular locomotion mechanism in mobile robotics and
in man-made vehicles in general. It can achieve very good efficiencies, as demonstrated in
figure 2.3, and does so with a relatively simple mechanical implementation. 

In addition, balance is not usually a research problem in wheeled robot designs, because
wheeled robots are almost always designed so that all wheels are in ground contact at all
times. Thus, three wheels are sufficient to guarantee stable balance, although, as we shall
see below, two-wheeled robots can also be stable. When more than three wheels are used,
a suspension system is required to allow all wheels to maintain ground contact when the
robot encounters uneven terrain.

Instead of worrying about balance, wheeled robot research tends to focus on the prob-
lems of traction and stability, maneuverability, and control: can the robot wheels provide

Figure 2.18
Genghis, one of the most famous walking robots from MIT, uses hobby servomotors as its actuators
(http://www.ai.mit.edu/projects/genghis). © MIT AI Lab.
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sufficient traction and stability for the robot to cover all of the desired terrain, and does the
robot’s wheeled configuration enable sufficient control over the velocity of the robot?

2.3.1   Wheeled locomotion: the design space
As we shall see, there is a very large space of possible wheel configurations when one con-
siders possible techniques for mobile robot locomotion. We begin by discussing the wheel
in detail, as there are a number of different wheel types with specific strengths and weak-
nesses. Then, we examine complete wheel configurations that deliver particular forms of
locomotion for a mobile robot.

2.3.1.1   Wheel design
There are four major wheel classes, as shown in figure 2.19. They differ widely in their
kinematics, and therefore the choice of wheel type has a large effect on the overall kinemat-
ics of the mobile robot. The standard wheel and the castor wheel have a primary axis of
rotation and are thus highly directional. To move in a different direction, the wheel must be
steered first along a vertical axis. The key difference between these two wheels is that the
standard wheel can accomplish this steering motion with no side effects, as the center of
rotation passes through the contact patch with the ground, whereas the castor wheel rotates
around an offset axis, causing a force to be imparted to the robot chassis during steering.

Figure 2.19
The four basic wheel types. (a) Standard wheel: two degrees of freedom; rotation around the (motor-
ized) wheel axle and the contact point.(b) castor wheel: two degrees of freedom; rotation around an
offset steering joint. (c) Swedish wheel: three degrees of freedom; rotation around the (motorized)
wheel axle, around the rollers, and around the contact point. (d) Ball or spherical wheel: realization
technically difficult.

a)

Swedish 90° Swedish 45°

Swedish 45°

b) c) d)
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The Swedish wheel and the spherical wheel are both designs that are less constrained by
directionality than the conventional standard wheel. The Swedish wheel functions as a
normal wheel, but provides low resistance in another direction as well, sometimes perpen-
dicular to the conventional direction, as in the Swedish 90, and sometimes at an intermedi-
ate angle, as in the Swedish 45. The small rollers attached around the circumference of the
wheel are passive and the wheel’s primary axis serves as the only actively powered joint.
The key advantage of this design is that, although the wheel rotation is powered only along
the one principal axis (through the axle), the wheel can kinematically move with very little
friction along many possible trajectories, not just forward and backward.

The spherical wheel is a truly omnidirectional wheel, often designed so that it may be
actively powered to spin along any direction. One mechanism for implementing this spher-
ical design imitates the computer mouse, providing actively powered rollers that rest
against the top surface of the sphere and impart rotational force. 

Regardless of what wheel is used, in robots designed for all-terrain environments and in
robots with more than three wheels, a suspension system is normally required to maintain
wheel contact with the ground. One of the simplest approaches to suspension is to design
flexibility into the wheel itself. For instance, in the case of some four-wheeled indoor robots
that use castor wheels, manufacturers have applied a deformable tire of soft rubber to the
wheel to create a primitive suspension. Of course, this limited solution cannot compete with
a sophisticated suspension system in applications where the robot needs a more dynamic
suspension for significantly non flat terrain.

Figure 2.20
Navlab I, the first autonomous highway vehicle that steers and controls the throttle using vision and
radar sensors [61]. Developed at CMU. 
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2.3.1.2   Wheel geometry
The choice of wheel types for a mobile robot is strongly linked to the choice of wheel
arrangement, or wheel geometry. The mobile robot designer must consider these two issues
simultaneously when designing the locomoting mechanism of a wheeled robot. Why do
wheel type and wheel geometry matter? Three fundamental characteristics of a robot are
governed by these choices: maneuverability, controllability, and stability.

Unlike automobiles, which are largely designed for a highly standardized environment
(the road network), mobile robots are designed for applications in a wide variety of situa-
tions. Automobiles all share similar wheel configurations because there is one region in the
design space that maximizes maneuverability, controllability, and stability for their stan-
dard environment: the paved roadway. However, there is no single wheel configuration that
maximizes these qualities for the variety of environments faced by different mobile robots.
So you will see great variety in the wheel configurations of mobile robots. In fact, few
robots use the Ackerman wheel configuration of the automobile because of its poor maneu-
verability, with the exception of mobile robots designed for the road system (figure 2.20).

Table 2.1 gives an overview of wheel configurations ordered by the number of wheels.
This table shows both the selection of particular wheel types and their geometric configu-
ration on the robot chassis. Note that some of the configurations shown are of little use in
mobile robot applications. For instance, the two-wheeled bicycle arrangement has moder-
ate maneuverability and poor controllability. Like a single-legged hopping machine, it can
never stand still. Nevertheless, this table provides an indication of the large variety of wheel
configurations that are possible in mobile robot design.

The number of variations in table 2.1 is quite large. However, there are important trends
and groupings that can aid in comprehending the advantages and disadvantages of each
configuration. Below, we identify some of the key trade-offs in terms of the three issues we
identified earlier: stability, maneuverability, and controllability.

2.3.1.3   Stability
Surprisingly, the minimum number of wheels required for static stability is two. As shown
above, a two-wheel differential-drive robot can achieve static stability if the center of mass
is below the wheel axle. Cye is a commercial mobile robot that uses this wheel configura-
tion (figure 2.21). 

However, under ordinary circumstances such a solution requires wheel diameters that
are impractically large. Dynamics can also cause a two-wheeled robot to strike the floor
with a third point of contact, for instance, with sufficiently high motor torques from stand-
still. Conventionally, static stability requires a minimum of three wheels, with the addi-
tional caveat that the center of gravity must be contained within the triangle formed by the
ground contact points of the wheels. Stability can be further improved by adding more
wheels, although once the number of contact points exceeds three, the hyperstatic nature of
the geometry will require some form of flexible suspension on uneven terrain. 
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Table 2.1 
Wheel configurations for rolling vehicles

# of 
wheels Arrangement Description Typical examples

2 One steering wheel in the front, 
one traction wheel in the rear

Bicycle, motorcycle

Two-wheel differential drive 
with the center of mass (COM) 
below the axle

Cye personal robot

3 Two-wheel centered differen-
tial drive with a third point of 
contact

Nomad Scout, smartRob 
EPFL

Two independently driven 
wheels in the rear/front, 1 
unpowered omnidirectional 
wheel in the front/rear

Many indoor robots, 
including the EPFL robots 
Pygmalion and Alice

Two connected traction wheels 
(differential) in rear, 1 steered 
free wheel in front

Piaggio minitrucks

Two free wheels in rear, 1 
steered traction wheel in front

Neptune (Carnegie Mellon 
University), Hero-1

Three motorized Swedish or 
spherical wheels arranged in a 
triangle; omnidirectional move-
ment is possible

Stanford wheel
Tribolo EPFL,
Palm Pilot Robot Kit 
(CMU)

Three synchronously motorized 
and steered wheels; the orienta-
tion is not controllable

“Synchro drive”
Denning MRV-2, Geor-
gia Institute of Technol-
ogy, I-Robot B24, Nomad 
200
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4 Two motorized wheels in the 
rear, 2 steered wheels in the 
front; steering has to be differ-
ent for the 2 wheels to avoid 
slipping/skidding.

Car with rear-wheel drive

Two motorized and steered 
wheels in the front, 2 free 
wheels in the rear; steering has 
to be different for the 2 wheels 
to avoid slipping/skidding.

Car with front-wheel drive

Four steered and motorized 
wheels

Four-wheel drive, four-
wheel steering Hyperion 
(CMU)

Two traction wheels (differen-
tial) in rear/front, 2 omnidirec-
tional wheels in the front/rear

Charlie (DMT-EPFL)

Four omnidirectional wheels Carnegie Mellon Uranus

Two-wheel differential drive 
with 2 additional points of con-
tact

EPFL Khepera, Hyperbot 
Chip

Four motorized and steered 
castor wheels

Nomad XR4000

Table 2.1 
Wheel configurations for rolling vehicles

# of 
wheels Arrangement Description Typical examples
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2.3.1.4   Maneuverability
Some robots are omnidirectional, meaning that they can move at any time in any direction
along the ground plane  regardless of the orientation of the robot around its vertical
axis. This level of maneuverability requires wheels that can move in more than just one
direction, and so omnidirectional robots usually employ Swedish or spherical wheels that
are powered. A good example is Uranus, shown in figure 2.24. This robot uses four Swed-
ish wheels to rotate and translate independently and without constraints. 

6 Two motorized and steered 
wheels aligned in center, 1 
omnidirectional wheel at each 
corner

First

Two traction wheels (differen-
tial) in center, 1 omnidirec-
tional wheel at each corner

Terregator (Carnegie Mel-
lon University)

Icons for the each wheel type are as follows:

unpowered omnidirectional wheel (spherical, castor, Swedish);

motorized Swedish wheel (Stanford wheel);

unpowered standard wheel;

motorized standard wheel;

motorized and steered castor wheel;

steered standard wheel;

connected wheels.

Table 2.1 
Wheel configurations for rolling vehicles

# of 
wheels Arrangement Description Typical examples

x y,( )
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In general, the ground clearance of robots with Swedish and spherical wheels is some-
what limited due to the mechanical constraints of constructing omnidirectional wheels. An
interesting recent solution to the problem of omnidirectional navigation while solving this
ground-clearance problem is the four-castor wheel configuration in which each castor
wheel is actively steered and actively translated. In this configuration, the robot is truly
omnidirectional because, even if the castor wheels are facing a direction perpendicular to
the desired direction of travel, the robot can still move in the desired direction by steering
these wheels. Because the vertical axis is offset from the ground-contact path, the result of
this steering motion is robot motion.

In the research community, other classes of mobile robots are popular which achieve
high maneuverability, only slightly inferior to that of the omnidirectional configurations.
In such robots, motion in a particular direction may initially require a rotational motion.
With a circular chassis and an axis of rotation at the center of the robot, such a robot can
spin without changing its ground footprint. The most popular such robot is the two-wheel
differential-drive robot where the two wheels rotate around the center point of the robot.
One or two additional ground contact points may be used for stability, based on the appli-
cation specifics.

In contrast to the above configurations, consider the Ackerman steering configuration
common in automobiles. Such a vehicle typically has a turning diameter that is larger than
the car. Furthermore, for such a vehicle to move sideways requires a parking maneuver con-
sisting of repeated changes in direction forward and backward. Nevertheless, Ackerman
steering geometries have been especially popular in the hobby robotics market, where a
robot can be built by starting with a remote control racecar kit and adding sensing and
autonomy to the existing mechanism. In addition, the limited maneuverability of Ackerman

Figure 2.21
Cye, a commercially available domestic robot that can vacuum and make deliveries in the home, is
built by Aethon Inc. (http://www.aethon.com). © Aethon Inc.
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steering has an important advantage: its directionality and steering geometry provide it with
very good lateral stability in high-speed turns.

2.3.1.5   Controllability
There is generally an inverse correlation between controllability and maneuverability. For
example, the omnidirectional designs such as the four-castor wheel configuration require
significant processing to convert desired rotational and translational velocities to individual
wheel commands. Furthermore, such omnidirectional designs often have greater degrees of
freedom at the wheel. For instance, the Swedish wheel has a set of free rollers along the
wheel perimeter. These degrees of freedom cause an accumulation of slippage, tend to
reduce dead-reckoning accuracy and increase the design complexity.

Controlling an omnidirectional robot for a specific direction of travel is also more diffi-
cult and often less accurate when compared to less maneuverable designs. For example, an
Ackerman steering vehicle can go straight simply by locking the steerable wheels and driv-
ing the drive wheels. In a differential-drive vehicle, the two motors attached to the two
wheels must be driven along exactly the same velocity profile, which can be challenging
considering variations between wheels, motors, and environmental differences. With four-
wheel omnidrive, such as the Uranus robot, which has four Swedish wheels, the problem is
even harder because all four wheels must be driven at exactly the same speed for the robot
to travel in a perfectly straight line.

In summary, there is no “ideal” drive configuration that simultaneously maximizes sta-
bility, maneuverability, and controllability. Each mobile robot application places unique
constraints on the robot design problem, and the designer’s task is to choose the most
appropriate drive configuration possible from among this space of compromises.

2.3.2   Wheeled locomotion: case studies
Below we describe four specific wheel configurations, in order to demonstrate concrete
applications of the concepts discussed above to mobile robots built for real-world activities. 

2.3.2.1   Synchro drive
The synchro drive configuration (figure 2.22) is a popular arrangement of wheels in indoor
mobile robot applications. It is an interesting configuration because, although there are
three driven and steered wheels, only two motors are used in total. The one translation
motor sets the speed of all three wheels together, and the one steering motor spins all the
wheels together about each of their individual vertical steering axes. But note that the
wheels are being steered with respect to the robot chassis, and therefore there is no direct
way of reorienting the robot chassis. In fact, the chassis orientation does drift over time due
to uneven tire slippage, causing rotational dead-reckoning error. 
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Synchro drive is particularly advantageous in cases where omnidirectionality is sought.
So long as each vertical steering axis is aligned with the contact path of each tire, the robot
can always reorient its wheels and move along a new trajectory without changing its foot-
print. Of course, if the robot chassis has directionality and the designers intend to reorient
the chassis purposefully, then synchro drive is only appropriate when combined with an
independently rotating turret that attaches to the wheel chassis. Commercial research robots
such as the Nomadics 150 or the RWI B21r have been sold with this configuration
(figure 1.12).

In terms of dead reckoning, synchro drive systems are generally superior to true omni-
directional configurations but inferior to differential-drive and Ackerman steering systems.
There are two main reasons for this. First and foremost, the translation motor generally
drives the three wheels using a single belt. Because of to slop and backlash in the drive
train, whenever the drive motor engages, the closest wheel begins spinning before the fur-
thest wheel, causing a small change in the orientation of the chassis. With additional
changes in motor speed, these small angular shifts accumulate to create a large error in ori-
entation during dead reckoning. Second, the mobile robot has no direct control over the ori-
entation of the chassis. Depending on the orientation of the chassis, the wheel thrust can be
highly asymmetric, with two wheels on one side and the third wheel alone, or symmetric,
with one wheel on each side and one wheel straight ahead or behind, as shown in figure
2.22. The asymmetric cases result in a variety of errors when tire-ground slippage can
occur, again causing errors in dead reckoning of robot orientation.

Figure 2.22
Synchro drive: The robot can move in any direction; however, the orientation of the chassis is not
controllable.
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2.3.2.2   Omnidirectional drive
As we will see later in section 3.4.2, omnidirectional movement is of great interest for com-
plete maneuverability. Omnidirectional robots that are able to move in any direction
( ) at any time are also holonomic (see section 3.4.2). They can be realized by either
using spherical, castor, or Swedish wheels. Three examples of such holonomic robots are
presented below.

Omnidirectional locomotion with three spherical wheels. The omnidirectional robot
depicted in figure 2.23 is based on three spherical wheels, each actuated by one motor. In
this design, the spherical wheels are suspended by three contact points, two given by spher-
ical bearings and one by a wheel connected to the motor axle. This concept provides excel-
lent maneuverability and is simple in design. However, it is limited to flat surfaces and
small loads, and it is quite difficult to find round wheels with high friction coefficients.

Omnidirectional locomotion with four Swedish wheels. The omnidirectional arrange-
ment depicted in figure 2.24 has been used successfully on several research robots, includ-
ing the Carnegie Mellon Uranus. This configuration consists of four Swedish 45-degree
wheels, each driven by a separate motor. By varying the direction of rotation and relative
speeds of the four wheels, the robot can be moved along any trajectory in the plane and,
even more impressively, can simultaneously spin around its vertical axis.

x y θ, ,

Figure 2.23
The Tribolo designed at EPFL (Swiss Federal Institute of Technology, Lausanne, Switzerland. Left:
arrangement of spheric bearings and motors (bottom view). Right: Picture of the robot without the
spherical wheels (bottom view).

spheric bearing motor
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For example, when all four wheels spin “forward” or “backward” the robot as a whole
moves in a straight line forward or backward, respectively. However, when one diagonal
pair of wheels is spun in the same direction and the other diagonal pair is spun in the oppo-
site direction, the robot moves laterally.

This four-wheel arrangement of Swedish wheels is not minimal in terms of control
motors. Because there are only three degrees of freedom in the plane, one can build a three-
wheel omnidirectional robot chassis using three Swedish 90-degree wheels as shown in
table 2.1. However, existing examples such as Uranus have been designed with four wheels
owing to capacity and stability considerations.

One application for which such omnidirectional designs are particularly amenable is
mobile manipulation. In this case, it is desirable to reduce the degrees of freedom of the
manipulator arm to save arm mass by using the mobile robot chassis motion for gross
motion. As with humans, it would be ideal if the base could move omnidirectionally with-
out greatly impacting the position of the manipulator tip, and a base such as Uranus can
afford precisely such capabilities.

Omnidirectional locomotion with four castor wheels and eight motors. Another solu-
tion for omnidirectionality is to use castor wheels. This is done for the Nomad XR4000
from Nomadic Technologies (fig. 2.25), giving it excellent maneuverability. Unfortu-
nately, Nomadic has ceased   production of mobile robots.

The above three examples are drawn from table 2.1, but this is not an exhaustive list of
all wheeled locomotion techniques. Hybrid approaches that combine legged and wheeled
locomotion, or tracked and wheeled locomotion, can also offer particular advantages.
Below are two unique designs created for specialized applications.

Figure 2.24
The Carnegie Mellon Uranus robot, an omnidirectional robot with four powered-swedish 45 wheels. 
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2.3.2.3   Tracked slip/skid locomotion
In the wheel configurations discussed above, we have made the assumption that wheels are
not allowed to skid against the surface. An alternative form of steering, termed slip/skid,
may be used to reorient the robot by spinning wheels that are facing the same direction at
different speeds or in opposite directions. The army tank operates this way, and the
Nanokhod (figure 2.26) is an example of a mobile robot based on the same concept. 

Robots that make use of tread have much larger ground contact patches, and this can sig-
nificantly improve their maneuverability in loose terrain compared to conventional
wheeled designs. However, due to this large ground contact patch, changing the orientation
of the robot usually requires a skidding turn, wherein a large portion of the track must slide
against the terrain. 

The disadvantage of such configurations is coupled to the slip/skid steering. Because of
the large amount of skidding during a turn, the exact center of rotation of the robot is hard
to predict and the exact change in position and orientation is also subject to variations
depending on the ground friction. Therefore, dead reckoning on such robots is highly inac-
curate. This is the trade-off that is made in return for extremely good maneuverability and
traction over rough and loose terrain. Furthermore, a slip/skid approach on a high-friction
surface can quickly overcome the torque capabilities of the motors being used. In terms of
power efficiency, this approach is reasonably efficient on loose terrain but extremely inef-
ficient otherwise.

Figure 2.25
The Nomad XR4000 from Nomadic Technologies had an arrangement of four castor wheels for holo-
nomic motion. All the castor wheels are driven and steered, thus requiring a precise synchronization
and coordination to obtain a precise movement in  and . x y, θ
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2.3.2.4   Walking wheels
Walking robots might offer the best maneuverability in rough terrain. However, they are
inefficient on flat ground and need sophisticated control. Hybrid solutions, combining the
adaptability of legs with the efficiency of wheels, offer an interesting compromise. Solu-
tions that passively adapt to the terrain are of particular interest for field and space robotics.
The Sojourner robot of NASA/JPL (see figure 1.2) represents such a hybrid solution, able
to overcome objects up to the size of the wheels. A more recent mobile robot design for
similar applications has recently been produced by EPFL (figure 2.27). This robot, called
Shrimp, has six motorized wheels and is capable of climbing objects up to two times its
wheel diameter [97, 133]. This enables it to climb regular stairs though the robot is even
smaller than the Sojourner. Using a rhombus configuration, the Shrimp has a steering wheel
in the front and the rear, and two wheels arranged on a bogie on each side. The front wheel
has a spring suspension to guarantee optimal ground contact of all wheels at any time. The
steering of the rover is realized by synchronizing the steering of the front and rear wheels
and the speed difference of the bogie wheels. This allows for high-precision maneuvers and
turning on the spot with minimum slip/skid of the four center wheels. The use of parallel
articulations for the front wheel and the bogies creates a virtual center of rotation at the
level of the wheel axis. This ensures maximum stability and climbing abilities even for very
low friction coefficients between the wheel and the ground.

Figure 2.26
The microrover Nanokhod, developed by von Hoerner & Sulger GmbH and the Max Planck Institute,
Mainz, for the European Space Agency (ESA), will probably go to Mars [138, 154].



44 Chapter 2

The climbing ability of the Shrimp is extraordinary in comparison to most robots of sim-
ilar mechanical complexity, owing much to the specific geometry and thereby the manner
in which the center of mass (COM) of the robot shifts with respect to the wheels over time.
In contrast, the Personal Rover demonstrates active COM shifting to climb ledges that are
also several times the diameter of its wheels, as demonstrated in figure 2.28. A majority of
the weight of the Personal Rover is borne at the upper end of its swinging boom. A dedi-
cated motor drives the boom to change the front/rear weight distribution in order to facili-
tate step-climbing. Because this COM-shifting scheme is active, a control loop must
explicitly decide how to move the boom during a climbing scenario. In this case the Per-
sonal Rover accomplished this closed-loop control by inferring terrain based on measure-
ments of current flowing to each independently driven wheel [66].

As mobile robotics research matures we find ourselves able to design more intricate
mechanical systems. At the same time, the control problems of inverse kinematics and
dynamics are now so readily conquered that these complex mechanics can in general be
controlled. So, in the near future, we can expect to see a great number of unique, hybrid
mobile robots that draw together advantages from several of the underlying locomotion
mechanisms that we have discussed in this chapter. They will each be technologically
impressive, and each will be designed as the expert robot for its particular environmental
niche.

Figure 2.27
Shrimp, an all-terrain robot with outstanding passive climbing abilities (EPFL [97, 133]).
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Figure 2.28
The Personal Rover, demonstrating ledge climbing using active center-of-mass shifting.





3 Mobile Robot Kinematics

3.1 Introduction

Kinematics is the most basic study of how mechanical systems behave. In mobile robotics,
we need to understand the mechanical behavior of the robot both in order to design appro-
priate mobile robots for tasks and to understand how to create control software for an
instance of mobile robot hardware.

Of course, mobile robots are not the first complex mechanical systems to require such
analysis. Robot manipulators have been the subject of intensive study for more than thirty
years. In some ways, manipulator robots are much more complex than early mobile robots:
a standard welding robot may have five or more joints, whereas early mobile robots were
simple differential-drive machines. In recent years, the robotics community has achieved a
fairly complete understanding of the kinematics and even the dynamics (i.e., relating to
force and mass) of robot manipulators [11, 32].

The mobile robotics community poses many of the same kinematic questions as the
robot manipulator community. A manipulator robot’s workspace is crucial because it
defines the range of possible positions that can be achieved by its end effector relative to
its fixture to the environment. A mobile robot’s workspace is equally important because it
defines the range of possible poses that the mobile robot can achieve in its environment.
The robot arm’s controllability defines the manner in which active engagement of motors
can be used to move from pose to pose in the workspace. Similarly, a mobile robot’s con-
trollability defines possible paths and trajectories in its workspace. Robot dynamics places
additional constraints on workspace and trajectory due to mass and force considerations.
The mobile robot is also limited by dynamics; for instance, a high center of gravity limits
the practical turning radius of a fast, car-like robot because of the danger of rolling.

But the chief difference between a mobile robot and a manipulator arm also introduces
a significant challenge for position estimation. A manipulator has one end fixed to the envi-
ronment. Measuring the position of an arm’s end effector is simply a matter of understand-
ing the kinematics of the robot and measuring the position of all intermediate joints. The
manipulator’s position is thus always computable by looking at current sensor data. But a
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mobile robot is a self-contained automaton that can wholly move with respect to its envi-
ronment. There is no direct way to measure a mobile robot’s position instantaneously.
Instead, one must integrate the motion of the robot over time. Add to this the inaccuracies
of motion estimation due to slippage and it is clear that measuring a mobile robot’s position
precisely is an extremely challenging task.

The process of understanding the motions of a robot begins with the process of describ-
ing the contribution each wheel provides for motion. Each wheel has a role in enabling the
whole robot to move. By the same token, each wheel also imposes constraints on the
robot’s motion; for example, refusing to skid laterally. In the following section, we intro-
duce notation that allows expression of robot motion in a global reference frame as well as
the robot’s local reference frame. Then, using this notation, we demonstrate the construc-
tion of simple forward kinematic models of motion, describing how the robot as a whole
moves as a function of its geometry and individual wheel behavior. Next, we formally
describe the kinematic constraints of individual wheels, and then combine these kinematic
constraints to express the whole robot’s kinematic constraints. With these tools, one can
evaluate the paths and trajectories that define the robot’s maneuverability. 

3.2 Kinematic Models and Constraints

Deriving a model for the whole robot’s motion is a bottom-up process. Each individual
wheel contributes to the robot’s motion and, at the same time, imposes constraints on robot
motion. Wheels are tied together based on robot chassis geometry, and therefore their con-
straints combine to form constraints on the overall motion of the robot chassis. But the
forces and constraints of each wheel must be expressed with respect to a clear and consis-
tent reference frame. This is particularly important in mobile robotics because of its self-
contained and mobile nature; a clear mapping between global and local frames of reference
is required. We begin by defining these reference frames formally, then using the resulting
formalism to annotate the kinematics of individual wheels and whole robots. Throughout
this process we draw extensively on the notation and terminology presented in [52].

3.2.1   Representing robot position
Throughout this analysis we model the robot as a rigid body on wheels, operating on a hor-
izontal plane. The total dimensionality of this robot chassis on the plane is three, two for
position in the plane and one for orientation along the vertical axis, which is orthogonal to
the plane. Of course, there are additional degrees of freedom and flexibility due to the
wheel axles, wheel steering joints, and wheel castor joints. However by robot chassis we
refer only to the rigid body of the robot, ignoring the joints and degrees of freedom internal
to the robot and its wheels. 
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In order to specify the position of the robot on the plane we establish a relationship
between the global reference frame of the plane and the local reference frame of the robot,
as in figure 3.1. The axes  and  define an arbitrary inertial basis on the plane as the
global reference frame from some origin O: . To specify the position of the robot,
choose a point P on the robot chassis as its position reference point. The basis 
defines two axes relative to P on the robot chassis and is thus the robot’s local reference
frame. The position of P in the global reference frame is specified by coordinates x and y,
and the angular difference between the global and local reference frames is given by . We
can describe the pose of the robot as a vector with these three elements. Note the use of the
subscript I to clarify the basis of this pose as the global reference frame:

 (3.1)

To describe robot motion in terms of component motions, it will be necessary to map
motion along the axes of the global reference frame to motion along the axes of the robot’s
local reference frame. Of course, the mapping is a function of the current pose of the robot.
This mapping is accomplished using the orthogonal rotation matrix:

Figure 3.1
The global reference frame and the robot local reference frame.
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 (3.2)

This matrix can be used to map motion in the global reference frame  to motion
in terms of the local reference frame . This operation is denoted by 
because the computation of this operation depends on the value of :

 (3.3)

For example, consider the robot in figure 3.2. For this robot, because  we can
easily compute the instantaneous rotation matrix R:

 (3.4)
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Figure 3.2
The mobile robot aligned with a global axis.
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 Given some velocity ( ) in the global reference frame we can compute the
components of motion along this robot’s local axes  and . In this case, due to the spe-
cific angle of the robot, motion along  is equal to  and motion along  is :

 (3.5)

3.2.2   Forward kinematic models
In the simplest cases, the mapping described by equation (3.3) is sufficient to generate a
formula that captures the forward kinematics of the mobile robot: how does the robot move,
given its geometry and the speeds of its wheels? More formally, consider the example
shown in figure 3.3. 

This differential drive robot has two wheels, each with diameter . Given a point  cen-
tered between the two drive wheels, each wheel is a distance  from . Given , , , and
the spinning speed of each wheel,  and , a forward kinematic model would predict
the robot’s overall speed in the global reference frame: 

 (3.6)

From equation (3.3) we know that we can compute the robot’s motion in the global ref-
erence frame from motion in its local reference frame: . Therefore, the strat-
egy will be to first compute the contribution of each of the two wheels in the local reference
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Figure 3.3
A differential-drive robot in its global reference frame.
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frame, . For this example of a differential-drive chassis, this problem is particularly
straightforward.

Suppose that the robot’s local reference frame is aligned such that the robot moves for-
ward along , as shown in figure 3.1. First consider the contribution of each wheel’s
spinning speed to the translation speed at P in the direction of . If one wheel spins
while the other wheel contributes nothing and is stationary, since P is halfway between the
two wheels, it will move instantaneously with half the speed:  and

. In a differential drive robot, these two contributions can simply be added
to calculate the  component of . Consider, for example, a differential robot in which
each wheel spins with equal speed but in opposite directions. The result is a stationary,
spinning robot. As expected,  will be zero in this case. The value of  is even simpler
to calculate. Neither wheel can contribute to sideways motion in the robot’s reference
frame, and so  is always zero. Finally, we must compute the rotational component  of

. Once again, the contributions of each wheel can be computed independently and just
added. Consider the right wheel (we will call this wheel 1). Forward spin of this wheel
results in counterclockwise rotation at point . Recall that if wheel 1 spins alone, the robot
pivots around wheel 2. The rotation velocity  at  can be computed because the wheel
is instantaneously moving along the arc of a circle of radius : 

 (3.7)

The same calculation applies to the left wheel, with the exception that forward spin
results in clockwise rotation at point :

 (3.8)

Combining these individual formulas yields a kinematic model for the differential-drive
example robot:

 (3.9)
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We can now use this kinematic model in an example. However, we must first compute
. In general, calculating the inverse of a matrix may be challenging. In this case,

however, it is easy because it is simply a transform from  to  rather than vice versa:

 (3.10)

Suppose that the robot is positioned such that , , and . If the robot
engages its wheels unevenly, with speeds  and , we can compute its veloc-
ity in the global reference frame:

 (3.11)

So this robot will move instantaneously along the y-axis of the global reference frame
with speed 3 while rotating with speed 1. This approach to kinematic modeling can provide
information about the motion of a robot given its component wheel speeds in straightfor-
ward cases. However, we wish to determine the space of possible motions for each robot
chassis design. To do this, we must go further, describing formally the constraints on robot
motion imposed by each wheel. Section 3.2.3 begins this process by describing constraints
for various wheel types; the rest of this chapter provides tools for analyzing the character-
istics and workspace of a robot given these constraints.

3.2.3   Wheel kinematic constraints
The first step to a kinematic model of the robot is to express constraints on the motions of
individual wheels. Just as shown in section 3.2.2, the motions of individual wheels can later
be combined to compute the motion of the robot as a whole. As discussed in chapter 2, there
are four basic wheel types with widely varying kinematic properties. Therefore, we begin
by presenting sets of constraints specific to each wheel type.

However, several important assumptions will simplify this presentation. We assume that
the plane of the wheel always remains vertical and that there is in all cases one single point
of contact between the wheel and the ground plane. Furthermore, we assume that there is
no sliding at this single point of contact. That is, the wheel undergoes motion only under
conditions of pure rolling and rotation about the vertical axis through the contact point. For
a more thorough treatment of kinematics, including sliding contact, refer to [25].
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Under these assumptions, we present two constraints for every wheel type. The first con-
straint enforces the concept of rolling contact – that the wheel must roll when motion takes
place in the appropriate direction. The second constraint enforces the concept of no lateral
slippage – that the wheel must not slide orthogonal to the wheel plane.

3.2.3.1   Fixed standard wheel
The fixed standard wheel has no vertical axis of rotation for steering. Its angle to the chassis
is thus fixed, and it is limited to motion back and forth along the wheel plane and rotation
around its contact point with the ground plane. Figure 3.4 depicts a fixed standard wheel 
and indicates its position pose relative to the robot’s local reference frame . The
position of  is expressed in polar coordinates by distance  and angle . The angle of the
wheel plane relative to the chassis is denoted by , which is fixed since the fixed standard
wheel is not steerable. The wheel, which has radius , can spin over time, and so its rota-
tional position around its horizontal axle is a function of time : .

The rolling constraint for this wheel enforces that all motion along the direction of the
wheel plane must be accompanied by the appropriate amount of wheel spin so that there is
pure rolling at the contact point:

 (3.12)

Figure 3.4
A fixed standard wheel and its parameters.
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The first term of the sum denotes the total motion along the wheel plane. The three ele-
ments of the vector on the left represent mappings from each of  to their contri-
butions for motion along the wheel plane. Note that the  term is used to transform
the motion parameters  that are in the global reference frame  into motion
parameters in the local reference frame  as shown in example equation (3.5). This
is necessary because all other parameters in the equation, , are in terms of the robot’s
local reference frame. This motion along the wheel plane must be equal, according to this
constraint, to the motion accomplished by spinning the wheel, . 

The sliding constraint for this wheel enforces that the component of the wheel’s motion
orthogonal to the wheel plane must be zero:

 (3.13)

For example, suppose that wheel  is in a position such that . This
would place the contact point of the wheel on  with the plane of the wheel oriented par-
allel to . If , then the sliding constraint [equation (3.13)] reduces to

 (3.14)

This constrains the component of motion along  to be zero and since  and  are
parallel in this example, the wheel is constrained from sliding sideways, as expected.

3.2.3.2   Steered standard wheel
The steered standard wheel differs from the fixed standard wheel only in that there is an
additional degree of freedom: the wheel may rotate around a vertical axis passing through
the center of the wheel and the ground contact point. The equations of position for the
steered standard wheel (figure 3.5) are identical to that of the fixed standard wheel shown
in figure 3.4 with one exception. The orientation of the wheel to the robot chassis is no
longer a single fixed value, , but instead varies as a function of time: . The rolling
and sliding constraints are

 (3.15)

 (3.16)
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These constraints are identical to those of the fixed standard wheel because, unlike ,
 does not have a direct impact on the instantaneous motion constraints of a robot. It is

only by integrating over time that changes in steering angle can affect the mobility of a
vehicle. This may seem subtle, but is a very important distinction between change in steer-
ing position, , and change in wheel spin, .

3.2.3.3   Castor wheel
Castor wheels are able to steer around a vertical axis. However, unlike the steered standard
wheel, the vertical axis of rotation in a castor wheel does not pass through the ground con-
tact point. Figure 3.6 depicts a castor wheel, demonstrating that formal specification of the
castor wheel’s position requires an additional parameter. 

The wheel contact point is now at position , which is connected by a rigid rod  of
fixed length to point  fixes the location of the vertical axis about which  steers, and
this point  has a position specified in the robot’s reference frame, as in figure 3.6. We
assume that the plane of the wheel is aligned with  at all times. Similar to the steered
standard wheel, the castor wheel has two parameters that vary as a function of time. 
represents the wheel spin over time as before.  denotes the steering angle and orienta-
tion of  over time.

For the castor wheel, the rolling constraint is identical to equation (3.15) because the
offset axis plays no role during motion that is aligned with the wheel plane:

Figure 3.5
A steered standard wheel and its parameters.
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 (3.17)

The castor geometry does, however, have significant impact on the sliding constraint.
The critical issue is that the lateral force on the wheel occurs at point because this is the
attachment point of the wheel to the chassis. Because of the offset ground contact point rel-
ative to , the constraint that there be zero lateral movement would be wrong. Instead, the
constraint is much like a rolling constraint, in that appropriate rotation of the vertical axis
must take place:

 (3.18)

In equation (3.18), any motion orthogonal to the wheel plane must be balanced by an
equivalent and opposite amount of castor steering motion. This result is critical to the suc-
cess of castor wheels because by setting the value of  any arbitrary lateral motion can be
acceptable. In a steered standard wheel, the steering action does not by itself cause a move-
ment of the robot chassis. But in a castor wheel the steering action itself moves the robot
chassis because of the offset between the ground contact point and the vertical axis of rota-
tion.

Figure 3.6
A castor wheel and its parameters.
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More concisely, it can be surmised from equations (3.17) and (3.18) that, given any
robot chassis motion , there exists some value for spin speed  and steering speed 
such that the constraints are met. Therefore, a robot with only castor wheels can move with
any velocity in the space of possible robot motions. We term such systems omnidirectional.

A real-world example of such a system is the five-castor wheel office chair shown in
figure 3.7. Assuming that all joints are able to move freely, you may select any motion
vector on the plane for the chair and push it by hand. Its castor wheels will spin and steer
as needed to achieve that motion without contact point sliding. By the same token, if each
of the chair’s castor wheels housed two motors, one for spinning and one for steering, then
a control system would be able to move the chair along any trajectory in the plane. Thus,
although the kinematics of castor wheels is somewhat complex, such wheels do not impose
any real constraints on the kinematics of a robot chassis.

3.2.3.4   Swedish wheel
Swedish wheels have no vertical axis of rotation, yet are able to move omnidirectionally
like the castor wheel. This is possible by adding a degree of freedom to the fixed standard
wheel. Swedish wheels consist of a fixed standard wheel with rollers attached to the wheel
perimeter with axes that are antiparallel to the main axis of the fixed wheel component. The
exact angle  between the roller axes and the main axis can vary, as shown in figure 3.8. 

For example, given a Swedish 45-degree wheel, the motion vectors of the principal axis
and the roller axes can be drawn as in figure 3.8. Since each axis can spin clockwise or
counterclockwise, one can combine any vector along one axis with any vector along the
other axis. These two axes are not necessarily independent (except in the case of the Swed-
ish 90-degree wheel); however, it is visually clear that any desired direction of motion is
achievable by choosing the appropriate two vectors.

ξ· I ϕ· β·

Figure 3.7
Office chair with five castor wheels.
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The pose of a Swedish wheel is expressed exactly as in a fixed standard wheel, with the
addition of a term, , representing the angle between the main wheel plane and the axis of
rotation of the small circumferential rollers. This is depicted in figure 3.8 within the robot’s
reference frame.

Formulating the constraint for a Swedish wheel requires some subtlety. The instanta-
neous constraint is due to the specific orientation of the small rollers. The axis around
which these rollers spin is a zero component of velocity at the contact point. That is, moving
in that direction without spinning the main axis is not possible without sliding. The motion
constraint that is derived looks identical to the rolling constraint for the fixed standard
wheel in equation (3.12) except that the formula is modified by adding  such that the
effective direction along which the rolling constraint holds is along this zero component
rather than along the wheel plane:

 (3.19)

Orthogonal to this direction the motion is not constrained because of the free rotation
of the small rollers.

 (3.20)

Figure 3.8
A Swedish wheel and its parameters.
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The behavior of this constraint and thereby the Swedish wheel changes dramatically as
the value  varies. Consider . This represents the swedish 90-degree wheel. In this
case, the zero component of velocity is in line with the wheel plane and so equation (3.19)
reduces exactly to equation (3.12), the fixed standard wheel rolling constraint. But because
of the rollers, there is no sliding constraint orthogonal to the wheel plane [see equation
(3.20)]. By varying the value of , any desired motion vector can be made to satisfy equa-
tion (3.19) and therefore the wheel is omnidirectional. In fact, this special case of the Swed-
ish design results in fully decoupled motion, in that the rollers and the main wheel provide
orthogonal directions of motion. 

At the other extreme, consider . In this case, the rollers have axes of rotation
that are parallel to the main wheel axis of rotation. Interestingly, if this value is substituted
for  in equation (3.19) the result is the fixed standard wheel sliding constraint, equation
(3.13). In other words, the rollers provide no benefit in terms of lateral freedom of motion
since they are simply aligned with the main wheel. However, in this case the main wheel
never needs to spin and therefore the rolling constraint disappears. This is a degenerate
form of the Swedish wheel and therefore we assume in the remainder of this chapter that

.

3.2.3.5   Spherical wheel
The final wheel type, a ball or spherical wheel, places no direct constraints on motion (fig-
ure 3.9). Such a mechanism has no principal axis of rotation, and therefore no appropriate
rolling or sliding constraints exist. As with castor wheels and Swedish wheels, the spherical

γ γ 0=

ϕ·

γ π 2⁄=

γ

γ π 2⁄≠

Figure 3.9
A spherical wheel and its parameters.
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wheel is clearly omnidirectional and places no constraints on the robot chassis kinematics.
Therefore equation (3.21) simply describes the roll rate of the ball in the direction of motion

 of point  of the robot.

 (3.21)

By definition the wheel rotation orthogonal to this direction is zero. 

 (3.22)

As can be seen, the equations for the spherical wheel are exactly the same as for the fixed
standard wheel. However, the interpretation of equation (3.22) is different. The omnidirec-
tional spherical wheel can have any arbitrary direction of movement, where the motion
direction given by  is a free variable deduced from equation (3.22). Consider the case that
the robot is in pure translation in the direction of . Then equation (3.22) reduces to

, thus , which makes sense for this special case.

3.2.4   Robot kinematic constraints
Given a mobile robot with  wheels we can now compute the kinematic constraints of the
robot chassis. The key idea is that each wheel imposes zero or more constraints on robot
motion, and so the process is simply one of appropriately combining all of the kinematic
constraints arising from all of the wheels based on the placement of those wheels on the
robot chassis.

We have categorized all wheels into five categories: (1) fixed and (2)steerable standard
wheels, (3) castor wheels, (4) Swedish wheels, and (5) spherical wheels. But note from the
wheel kinematic constraints in equations (3.17), (3.18), and (3.19) that the castor wheel,
Swedish wheel, and spherical wheel impose no kinematic constraints on the robot chassis,
since  can range freely in all of these cases owing to the internal wheel degrees of free-
dom.

Therefore only fixed standard wheels and steerable standard wheels have impact on
robot chassis kinematics and therefore require consideration when computing the robot’s
kinematic constraints. Suppose that the robot has a total of  standard wheels, comprising

 fixed standard wheels and  steerable standard wheels. We use  to denote the
variable steering angles of the  steerable standard wheels. In contrast,  refers to the
orientation of the  fixed standard wheels as depicted in figure 3.4. In the case of wheel
spin, both the fixed and steerable wheels have rotational positions around the horizontal
axle that vary as a function of time. We denote the fixed and steerable cases separately as

 and , and use  as an aggregate matrix that combines both values:
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 (3.23)

The rolling constraints of all wheels can now be collected in a single expression:

 (3.24)

This expression bears a strong resemblance to the rolling constraint of a single wheel,
but substitutes matrices in lieu of single values, thus taking into account all wheels.  is a
constant diagonal  matrix whose entries are radii  of all standard wheels. 
denotes a matrix with projections for all wheels to their motions along their individual
wheel planes:

 (3.25)

Note that  is only a function of  and not . This is because the orientations of
steerable standard wheels vary as a function of time, whereas the orientations of fixed stan-
dard wheels are constant.  is therefore a constant matrix of projections for all fixed stan-
dard wheels. It has size ( ), with each row consisting of the three terms in the three-
matrix from equation (3.12) for each fixed standard wheel.  is a matrix of size
( ), with each row consisting of the three terms in the three-matrix from equation
(3.15) for each steerable standard wheel. 

In summary, equation (3.24) represents the constraint that all standard wheels must spin
around their horizontal axis an appropriate amount based on their motions along the wheel
plane so that rolling occurs at the ground contact point.

We use the same technique to collect the sliding constraints of all standard wheels into
a single expression with the same structure as equations (3.13) and (3.16):

 (3.26)

 (3.27)

 and  are ( ) and ( ) matrices whose rows are the three terms in the
three-matrix of equations (3.13) and (3.16) for all fixed and steerable standard wheels. Thus
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equation (3.26) is a constraint over all standard wheels that their components of motion
orthogonal to their wheel planes must be zero. This sliding constraint over all standard
wheels has the most significant impact on defining the overall maneuverability of the robot
chassis, as explained in the next section.

3.2.5   Examples: robot kinematic models and constraints
In section 3.2.2 we presented a forward kinematic solution for  in the case of a simple
differential-drive robot by combining each wheel’s contribution to robot motion. We can
now use the tools presented above to construct the same kinematic expression by direct
application of the rolling constraints for every wheel type. We proceed with this technique
applied again to the differential drive robot, enabling verification of the method as com-
pared to the results of section 3.2.2. Then we proceed to the case of the three-wheeled omni-
directional robot. 

3.2.5.1   A differential-drive robot example
First, refer to equations (3.24) and (3.26). These equations relate robot motion to the rolling
and sliding constraints  and , and the wheel spin speed of the robot’s wheels,

. Fusing these two equations yields the following expression:

 (3.28)

Once again, consider the differential drive robot in figure 3.3. We will construct 
and  directly from the rolling constraints of each wheel. The castor is unpowered and
is free to move in any direction, so we ignore this third point of contact altogether. The two
remaining drive wheels are not steerable, and therefore  and  simplify to 
and  respectively. To employ the fixed standard wheel’s rolling constraint formula,
equation (3.12), we must first identify each wheel’s values for  and . Suppose that the
robot’s local reference frame is aligned such that the robot moves forward along , as
shown in figure 3.1. In this case, for the right wheel , , and for the left
wheel, , . Note the value of  for the right wheel is necessary to ensure
that positive spin causes motion in the  direction (figure 3.4). Now we can compute
the  and  matrix using the matrix terms from equations (3.12) and (3.13). Because
the two fixed standard wheels are parallel, equation (3.13) results in only one independent
equation, and equation (3.28) gives
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 (3.29)

Inverting equation (3.29) yields the kinematic equation specific to our differential drive
robot:

 (3.30)

This demonstrates that, for the simple differential-drive case, the combination of wheel
rolling and sliding constraints describes the kinematic behavior, based on our manual cal-
culation in section 3.2.2. 

3.2.5.2   An omnidirectional robot example
Consider the omniwheel robot shown in figure 3.10. This robot has three Swedish 90-
degree wheels, arranged radially symmetrically, with the rollers perpendicular to each main
wheel.

First we must impose a specific local reference frame upon the robot. We do so by
choosing point  at the center of the robot, then aligning the robot with the local reference
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Figure 3.10
A three-wheel omnidrive robot developed by Carnegie Mellon University (www.cs.cmu.edu/~pprk). 
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frame such that  is colinear with the axis of wheel 2. Figure 3.11 shows the robot and its
local reference frame arranged in this manner.

We assume that the distance between each wheel and  is , and that all three wheels
have the same radius, . Once again, the value of  can be computed as a combination of
the rolling constraints of the robot’s three omnidirectional wheels, as in equation (3.28). As
with the differential- drive robot, since this robot has no steerable wheels,  simplifies
to :

 (3.31)

We calculate  using the matrix elements of the rolling constraints for the Swedish
wheel, given by equation (3.19). But to use these values, we must establish the values

 for each wheel. Referring to figure (3.8), we can see that  for the Swedish 90-
degree wheel. Note that this immediately simplifies equation (3.19) to equation (3.12), the
rolling constraints of a fixed standard wheel. Given our particular placement of the local
reference frame, the value of  for each wheel is easily computed:

. Furthermore,  for all wheels because the
wheels are tangent to the robot’s circular body. Constructing and simplifying  using
equation (3.12) yields

Figure 3.11
The local reference frame plus detailed parameters for wheel 1.
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 (3.32)

Once again, computing the value of  requires calculating the inverse, , as needed
in equation (3.31). One approach would be to apply rote methods for calculating the inverse
of a 3 x 3 square matrix. A second approach would be to compute the contribution of each
Swedish wheel to chassis motion, as shown in section 3.2.2. We leave this process as an
exercise for the enthusiast. Once the inverse is obtained,  can be isolated:

 (3.33)

Consider a specific omnidrive chassis with  and  for all wheels. The robot’s
local reference frame and global reference frame are aligned, so that . If wheels 1,
2, and 3 spin at speeds , what is the resulting motion of the
whole robot? Using the equation above, the answer can be calculated readily:

 (3.34)

So this robot will move instantaneously along the -axis with positive speed and along
the axis with negative speed while rotating clockwise. We can see from the above exam-
ples that robot motion can be predicted by combining the rolling constraints of individual
wheels.
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The sliding constraints comprising  can be used to go even further, enabling us
to evaluate the maneuverability and workspace of the robot rather than just its predicted
motion. Next, we examine methods for using the sliding constraints, sometimes in conjunc-
tion with rolling constraints, to generate powerful analyses of the maneuverability of a
robot chassis.

3.3 Mobile Robot Maneuverability

The kinematic mobility of a robot chassis is its ability to directly move in the environment.
The basic constraint limiting mobility is the rule that every wheel must satisfy its sliding
constraint. Therefore, we can formally derive robot mobility by starting from equation
(3.26).

In addition to instantaneous kinematic motion, a mobile robot is able to further manip-
ulate its position, over time, by steering steerable wheels. As we will see in section 3.3.3,
the overall maneuverability of a robot is thus a combination of the mobility available based
on the kinematic sliding constraints of the standard wheels, plus the additional freedom
contributed by steering and spinning the steerable standard wheels.

3.3.1   Degree of mobility
Equation (3.26) imposes the constraint that every wheel must avoid any lateral slip. Of
course, this holds separately for each and every wheel, and so it is possible to specify this
constraint separately for fixed and for steerable standard wheels:

 (3.35)

 (3.36)

For both of these constraints to be satisfied, the motion vector  must belong to
the null space of the projection matrix , which is simply a combination of  and

. Mathematically, the null space of  is the space N such that for any vector n in
N, . If the kinematic constraints are to be honored, then the motion of the
robot must always be within this space . The kinematic constraints [equations (3.35) and
(3.36)] can also be demonstrated geometrically using the concept of a robot’s instantaneous
center of rotation ( ).

Consider a single standard wheel. It is forced by the sliding constraint to have zero lat-
eral motion. This can be shown geometrically by drawing a zero motion line through its
horizontal axis, perpendicular to the wheel plane (figure 3.12). At any given instant, wheel
motion along the zero motion line must be zero. In other words, the wheel must be moving
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instantaneously along some circle of radius  such that the center of that circle is located
on the zero motion line. This center point, called the instantaneous center of rotation, may
lie anywhere along the zero motion line. When R is at infinity, the wheel moves in a straight
line.

A robot such as the Ackerman vehicle in figure 3.12a can have several wheels, but must
always have a single . Because all of its zero motion lines meet at a single point, there
is a single solution for robot motion, placing the  at this meet point.

This  geometric construction demonstrates how robot mobility is a function of the
number of constraints on the robot’s motion, not the number of wheels. In figure 3.12b, the
bicycle shown has two wheels, and . Each wheel contributes a constraint, or a zero
motion line. Taken together the two constraints result in a single point as the only remaining
solution for the . This is because the two constraints are independent, and thus each
further constrains overall robot motion.

But in the case of the differential drive robot in figure 3.13a, the two wheels are aligned
along the same horizontal axis. Therefore, the  is constrained to lie along a line, not at
a specific point. In fact, the second wheel imposes no additional kinematic constraints on
robot motion since its zero motion line is identical to that of the first wheel. Thus, although
the bicycle and differential-drive chassis have the same number of nonomnidirectional
wheels, the former has two independent kinematic constraints while the latter has only one.

Figure 3.12
(a) Four-wheel with car-like Ackerman steering. (b) bicycle.
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The Ackerman vehicle of figure 3.12a demonstrates another way in which a wheel may
be unable to contribute an independent constraint to the robot kinematics. This vehicle has
two steerable standard wheels. Given the instantaneous position of just one of these steer-
able wheels and the position of the fixed rear wheels, there is only a single solution for the

. The position of the second steerable wheel is absolutely constrained by the .
Therefore, it offers no independent constraints to robot motion.

Robot chassis kinematics is therefore a function of the set of independent constraints
arising from all standard wheels. The mathematical interpretation of independence is
related to the rank of a matrix. Recall that the rank of a matrix is the smallest number of
independent rows or columns. Equation (3.26) represents all sliding constraints imposed by
the wheels of the mobile robot. Therefore  is the number of independent con-
straints.

The greater the number of independent constraints, and therefore the greater the rank of
, the more constrained is the mobility of the robot. For example, consider a robot

with a single fixed standard wheel. Remember that we consider only standard wheels. This
robot may be a unicycle or it may have several Swedish wheels; however, it has exactly one
fixed standard wheel. The wheel is at a position specified by parameters  relative
to the robot’s local reference frame.  is comprised of  and . However, since
there are no steerable standard wheels  is empty and therefore  contains only

. Because there is one fixed standard wheel, this matrix has a rank of one and therefore
this robot has a single independent constrain on mobility:

 (3.37)

Figure 3.13
(a) Differential drive robot with two individually motorized wheels and a castor wheel, e.g., the Pyg-
malion robot at EPFL. (b) Tricycle with two fixed standard wheels and one steered standard wheel,
e.g. Piaggio minitransporter.
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Now let us add an additional fixed standard wheel to create a differential-drive robot by
constraining the second wheel to be aligned with the same horizontal axis as the original
wheel. Without loss of generality, we can place point  at the midpoint between the centers
of the two wheels. Given  for wheel  and  for wheel , it
holds geometrically that . Therefore, in this
case, the matrix  has two constraints but a rank of one:

 (3.38)

Alternatively, consider the case when  is placed in the wheel plane of  but with
the same orientation, as in a bicycle with the steering locked in the forward position. We
again place point  between the two wheel centers, and orient the wheels such that they lie
on axis . This geometry implies that 
and, therefore, the matrix  retains two independent constraints and has a rank of two:

 (3.39)

In general, if  then the vehicle can, at best, only travel along a circle or
along a straight line. This configuration means that the robot has two or more independent
constraints due to fixed standard wheels that do not share the same horizontal axis of rota-
tion. Because such configurations have only a degenerate form of mobility in the plane, we
do not consider them in the remainder of this chapter. Note, however, that some degenerate
configurations such as the four-wheeled slip/skid steering system are useful in certain envi-
ronments, such as on loose soil and sand, even though they fail to satisfy sliding constraints.
Not surprisingly, the price that must be paid for such violations of the sliding constraints is
that dead reckoning based on odometry becomes less accurate and power efficiency is
reduced dramatically.

In general, a robot will have zero or more fixed standard wheels and zero or more steer-
able standard wheels. We can therefore identify the possible range of rank values for any
robot: . Consider the case . This is only possible
if there are zero independent kinematic constraints in . In this case there are neither
fixed nor steerable standard wheels attached to the robot frame: .

Consider the other extreme, . This is the maximum possible rank
since the kinematic constraints are specified along three degrees of freedom (i.e., the con-
straint matrix is three columns wide). Therefore, there cannot be more than three indepen-
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dent constraints. In fact, when , then the robot is completely constrained
in all directions and is, therefore, degenerate since motion in the plane is totally impossible.

Now we are ready to formally define a robot’s degree of mobility :

 (3.40)

The dimensionality of the null space ( ) of matrix  is a measure of the
number of degrees of freedom of the robot chassis that can be immediately manipulated
through changes in wheel velocity. It is logical therefore that  must range between 0
and 3. 

Consider an ordinary differential-drive chassis. On such a robot there are two fixed stan-
dard wheels sharing a common horizontal axis. As discussed above, the second wheel adds
no independent kinematic constraints to the system. Therefore,  and

. This fits with intuition: a differential drive robot can control both the rate of its
change in orientation and its forward/reverse speed, simply by manipulating wheel veloci-
ties. In other words, its  is constrained to lie on the infinite line extending from its
wheels’ horizontal axles.

In contrast, consider a bicycle chassis. This configuration consists of one fixed standard
wheel and one steerable standard wheel. In this case, each wheel contributes an indepen-
dent sliding constraint to . Therefore, . Note that the bicycle has the same
total number of nonomidirectional wheels as the differential-drive chassis, and indeed one
of its wheels is steerable. Yet it has one less degree of mobility. Upon reflection this is
appropriate. A bicycle only has control over its forward/reverse speed by direct manipula-
tion of wheel velocities. Only by steering can the bicycle change its .

As expected, based on equation (3.40) any robot consisting only of omnidirectional
wheels such as Swedish or spherical wheels will have the maximum mobility, .
Such a robot can directly manipulate all three degrees of freedom.

3.3.2   Degree of steerability
The degree of mobility defined above quantifies the degrees of controllable freedom based
on changes to wheel velocity. Steering can also have an eventual impact on a robot chassis
pose , although the impact is indirect because after changing the angle of a steerable stan-
dard wheel, the robot must move for the change in steering angle to have impact on pose.

As with mobility, we care about the number of independently controllable steering
parameters when defining the degree of steerability :

 (3.41)
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Recall that in the case of mobility, an increase in the rank of  implied more kine-
matic constraints and thus a less mobile system. In the case of steerability, an increase in
the rank of  implies more degrees of steering freedom and thus greater eventual
maneuverability. Since  includes , this means that a steered standard wheel
can both decrease mobility and increase steerability: its particular orientation at any instant
imposes a kinematic constraint, but its ability to change that orientation can lead to addi-
tional trajectories.

The range of  can be specified: . The case  implies that the robot
has no steerable standard wheels, . The case  is most common when a robot
configuration includes one or more steerable standard wheels. 

For example, consider an ordinary automobile. In this case  and . But
the fixed wheels share a common axle and so . The fixed wheels and any
one of the steerable wheels constrain the  to be a point along the line extending from
the rear axle. Therefore, the second steerable wheel cannot impose any independent kine-
matic constraint and so . In this case  and .

The case  is only possible in robots with no fixed standard wheels: .
Under these circumstances, it is possible to create a chassis with two separate steerable
standard wheels, like a pseudobicycle (or the two-steer) in which both wheels are steerable.
Then, orienting one wheel constrains the  to a line while the second wheel can con-
strain the  to any point along that line. Interestingly, this means that the 
implies that the robot can place its  anywhere on the ground plane.

3.3.3   Robot maneuverability
The overall degrees of freedom that a robot can manipulate, called the degree of maneuver-
ability , can be readily defined in terms of mobility and steerability:

 (3.42)

Therefore maneuverability includes both the degrees of freedom that the robot manipu-
lates directly through wheel velocity and the degrees of freedom that it indirectly manipu-
lates by changing the steering configuration and moving. Based on the investigations of the
previous sections, one can draw the basic types of wheel configurations. They are depicted
in figure 3.14

Note that two robots with the same are not necessarily equivalent. For example, dif-
ferential drive and tricycle geometries (figure 3.13) have equal maneuverability .
In differential drive all maneuverability is the result of direct mobility because  and

. In the case of a tricycle the maneuverability results from steering also: 
and . Neither of these configurations allows the  to range anywhere on the
plane. In both cases, the must lie on a predefined line with respect to the robot refer-
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ence frame. In the case of differential drive, this line extends from the common axle of the
two fixed standard wheels, with the differential wheel velocities setting the  point on
this line. In a tricycle, this line extends from the shared common axle of the fixed wheels,
with the steerable wheel setting the  point along this line.

More generally, for any robot with  the  is always constrained to lie on a
line and for any robot with  the  can be set to any point on the plane.

One final example will demonstrate the use of the tools we have developed above. One
common robot configuration for indoor mobile robotics research is the synchro drive con-
figuration (figure 2.22). Such a robot has two motors and three wheels that are locked
together. One motor provides power for spinning all three wheels while the second motor
provides power for steering all three wheels. In a three-wheeled synchro drive robot

 and . Therefore  can be used to determine both and
. The three wheels do not share a common axle, therefore two of the three contribute

independent sliding constraints. The third must be dependent on these two constraints for
motion to be possible. Therefore  and . This is intuitively cor-
rect. A synchro drive robot with the steering frozen manipulates only one degree of free-
dom, consisting of traveling back and forth on a straight line.

However an interesting complication occurs when considering . Based on equation
(3.41) the robot should have . Indeed, for a three-wheel-steering robot with the geo-
metric configuration of a synchro drive robot this would be correct. However, we have
additional information: in a synchro drive configuration a single motor steers all three
wheels using a belt drive. Therefore, although ideally, if the wheels were independently
steerable, then the system would achieve , in the case of synchro drive the drive

Figure 3.14
The five basic types of three-wheel configurations. The spherical wheels can be replaced by castor or
Swedish wheels without influencing maneuverability. More configurations with various numbers of
wheels are found in chapter 2.
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system further constrains the kinematics such that in reality . Finally, we can com-
pute maneuverability based on these values:  for a synchro drive robot.

This result implies that a synchro drive robot can only manipulate, in total, two degrees
of freedom. In fact, if the reader reflects on the wheel configuration of a synchro drive robot
it will become apparent that there is no way for the chassis orientation to change. Only the

 position of the chassis can be manipulated and so, indeed, a synchro drive robot has
only two degrees of freedom, in agreement with our mathematical conclusion.

3.4 Mobile Robot Workspace

For a robot, maneuverability is equivalent to its control degrees of freedom. But the robot
is situated in some environment, and the next question is to situate our analysis in the envi-
ronment. We care about the ways in which the robot can use its control degrees of freedom
to position itself in the environment. For instance, consider the Ackerman vehicle, or auto-
mobile. The total number of control degrees of freedom for such a vehicle is , one
for steering and the second for actuation of the drive wheels. But what is the total degrees
of freedom of the vehicle in its environment? In fact it is three: the car can position itself
on the plane at any  point and with any angle .

Thus identifying a robot’s space of possible configurations is important because surpris-
ingly it can exceed . In addition to workspace, we care about how the robot is able to
move between various configurations: what are the types of paths that it can follow and,
furthermore, what are its possible trajectories through this configuration space? In the
remainder of this discussion, we move away from inner kinematic details such as wheels
and focus instead on the robot chassis pose and the chassis degrees of freedom. With this
in mind, let us place the robot in the context of its workspace now.

3.4.1   Degrees of freedom
In defining the workspace of a robot, it is useful to first examine its admissible velocity
space. Given the kinematic constraints of the robot, its velocity space describes the inde-
pendent components of robot motion that the robot can control. For example, the velocity
space of a unicycle can be represented with two axes, one representing the instantaneous
forward speed of the unicycle and the second representing the instantaneous change in ori-
entation, , of the unicycle.

The number of dimensions in the velocity space of a robot is the number of indepen-
dently achievable velocities. This is also called the differentiable degrees of freedom
( ). A robot’s    is always equal to its degree of mobility . For example,
a bicycle has the following degree of maneuverability: . The

 of a bicycle is indeed 1.
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In contrast to a bicycle, consider an omnibot, a robot with three Swedish wheels. We
know that in this case there are zero standard wheels and therefore

. So, the omnibot has three differential degrees of freedom.
This is appropriate, given that because such a robot has no kinematic motion constraints, it
is able to independently set all three pose variables: .

Given the difference in DDOF between a bicycle and an omnibot, consider the overall
degrees of freedom in the workspace of each configuration. The omnibot can achieve any
pose  in its environment and can do so by directly achieving the goal positions of
all three axes simultaneously because . Clearly, it has a workspace with

.
Can a bicycle achieve any pose  in its environment? It can do so, but achieving

some goal points may require more time and energy than an equivalent omnibot. For exam-
ple, if a bicycle configuration must move laterally 1 m, the simplest successful maneuver
would involve either a spiral or a back-and-forth motion similar to parallel parking of auto-
mobiles. Nevertheless, a bicycle can achieve any  and therefore the workspace of
a bicycle has =3 as well.

Clearly, there is an inequality relation at work: . Although the
dimensionality of a robot’s workspace is an important attribute, it is clear from the example
above that the particular paths available to a robot matter as well. Just as workspace DOF
governs the robot’s ability to achieve various poses, so the robot’s  governs its abil-
ity to achieve various paths.

3.4.2   Holonomic robots
In the robotics community, when describing the path space of a mobile robot, often the con-
cept of holonomy is used. The term holonomic has broad applicability to several mathemat-
ical areas, including differential equations, functions and constraint expressions. In mobile
robotics, the term refers specifically to the kinematic constraints of the robot chassis. A
holonomic robot is a robot that has zero nonholonomic kinematic constraints. Conversely,
a nonholonomic robot is a robot with one or more nonholonomic kinematic constraints.

A holonomic kinematic constraint can be expressed as an explicit function of position
variables only. For example, in the case of a mobile robot with a single fixed standard
wheel, a holonomic kinematic constraint would be expressible using 

 only. Such a constraint may not use derivatives of these values, such as  or . A
nonholonomic kinematic constraint requires a differential relationship, such as the deriva-
tive of a position variable. Furthermore, it cannot be integrated to provide a constraint in
terms of the position variables only. Because of this latter point of view, nonholonomic sys-
tems are often called nonintegrable systems.
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Consider the fixed standard wheel sliding constraint:

 (3.43)

This constraint must use robot motion  rather than pose  because the point is to con-
strain robot motion perpendicular to the wheel plane to be zero. The constraint is noninte-
grable, depending explicitly on robot motion. Therefore, the sliding constraint is a
nonholonomic constraint. Consider a bicycle configuration, with one fixed standard wheel
and one steerable standard wheel. Because the fixed wheel sliding constraint will be in
force for such a robot, we can conclude that the bicycle is a nonholonomic robot.

But suppose that one locks the bicycle steering system, so that it becomes two fixed stan-
dard wheels with separate but parallel axes. We know that  for such a configura-
tion. Is it nonholonomic? Although it may not appear so because of the sliding and rolling
constraints, the locked bicycle is actually holonomic. Consider the workspace of this
locked bicycle. It consists of a single infinite line along which the bicycle can move (assum-
ing the steering was frozen straight ahead). For formulaic simplicity, assume that this infi-
nite line is aligned with  in the global reference frame and that

. In this case the sliding constraints of both wheels can be
replaced with an equally complete set of constraints on the robot pose: .
This eliminates two nonholonomic constraints, corresponding to the sliding constraints of
the two wheels. 

The only remaining nonholonomic kinematic constraints are the rolling constraints for
each wheel:

 (3.44)

This constraint is required for each wheel to relate the speed of wheel spin to the speed
of motion projected along the wheel plane. But in the case of our locked bicycle, given the
initial rotational position of a wheel at the origin, , we can replace this constraint with
one that directly relates position on the line, x, with wheel rotation angle, :

.
The locked bicycle is an example of the first type of holonomic robot – where constraints

do exist but are all holonomic kinematic constraints. This is the case for all holonomic
robots with . The second type of holonomic robot exists when there are no kinematic
constraints, that is,  and . Since there are no kinematic constraints, there are
also no nonholonomic kinematic constraints and so such a robot is always holonomic. This
is the case for all holonomic robots with .
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An alternative way to describe a holonomic robot is based on the relationship between
the differential degrees of freedom of a robot and the degrees of freedom of its workspace:
a robot is holonomic if and only if  = . Intuitively, this is because it is only
through nonholonomic constraints (imposed by steerable or fixed standard wheels) that a
robot can achieve a workspace with degrees of freedom exceeding its differential degrees
of freedom,  > . Examples include differential drive and bicycle/tricycle con-
figurations.

In mobile robotics, useful chassis generally must achieve poses in a workspace with
dimensionality 3, so in general we require  for the chassis. But the “holonomic”
abilities to maneuver around obstacles without affecting orientation and to track at a target
while following an arbitrary path are important additional considerations. For these rea-
sons, the particular form of holonomy most relevant to mobile robotics is that of

. We define this class of robot configurations as omnidirectional: an
omnidirectional robot is a holonomic robot with .

3.4.3   Path and trajectory considerations
In mobile robotics, we care not only about the robot’s ability to reach the required final con-
figurations but also about how it gets there. Consider the issue of a robot’s ability to follow
paths: in the best case, a robot should be able to trace any path through its workspace of
poses. Clearly, any omnidirectional robot can do this because it is holonomic in a three-
dimensional workspace. Unfortunately, omnidirectional robots must use unconstrained
wheels, limiting the choice of wheels to Swedish wheels, castor wheels, and spherical
wheels. These wheels have not yet been incorporated into designs allowing far larger
amounts of ground clearance and suspensions. Although powerful from a path space point
of view, they are thus much less common than fixed and steerable standard wheels, mainly
because their design and fabrication are somewhat complex and expensive. 

Additionally, nonholonomic constraints might drastically improve stability of move-
ments. Consider an omnidirectional vehicle driving at high speed on a curve with constant
diameter. During such a movement the vehicle will be exposed to a non-negligible centrip-
etal force. This lateral force pushing the vehicle out of the curve has to be counteracted by
the motor torque of the omnidirectional wheels. In case of motor or control failure, the vehi-
cle will be thrown out of the curve. However, for a car-like robot with kinematic con-
straints, the lateral forces are passively counteracted through the sliding constraints,
mitigating the demands on motor torque.

But recall an earlier example of high maneuverability using standard wheels: the bicycle
on which both wheels are steerable, often called the two-steer. This vehicle achieves a
degree of steerability of 2, resulting in a high degree of maneuverability:

. Interestingly, this configuration is not holonomic, yet has a
high degree of maneuverability in a workspace with . 
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The maneuverability result, , means that the two-steer can select any  by
appropriately steering its two wheels. So, how does this compare to an omnidirectional
robot? The ability to manipulate its  in the plane means that the two-steer can follow
any path in its workspace. More generally, any robot with  can follow any path in
its workspace from its initial pose to its final pose. An omnidirectional robot can also follow
any path in its workspace and, not surprisingly, since  in an omnidirectional robot,
then it must follow that .

But there is still a difference between a degree of freedom granted by steering versus by
direct control of wheel velocity. This difference is clear in the context of trajectories rather
than paths. A trajectory is like a path, except that it occupies an additional dimension: time.
Therefore, for an omnidirectional robot on the ground plane a path generally denotes a trace
through a 3D space of pose; for the same robot a trajectory denotes a trace through the 4D
space of pose plus time. 

For example, consider a goal trajectory in which the robot moves along axis  at a con-
stant speed of 1 m/s for 1 second, then changes orientation counterclockwise 90 degrees
also in 1 second, then moves parallel to axis  for 1 final second. The desired 3-second
trajectory is shown in figure 3.15, using plots of  and  in relation to time. 
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Figure 3.15
Example of robot trajectory with omnidirectional robot: move for 1 second with constant speed of
1 m/s along axis ; change orientation counterclockwise 90 degree, in 1 second; move for 1 second
with constant speed of 1 m/s along axis .
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Figure 3.16
Example of robot trajectory similar to figure 3.15 with two steered wheels: move for 1 second with
constant speed of 1 m/s along axis ; rotate steered wheels -50 / 50 degree respectively; change ori-
entation counterclockwise 90 degree in 1 second; rotate steered wheels 50 / -50 degree respectively;
move for 1 second with constant speed of 1 m/s along axis .
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Can the omnidirectional robot accomplish this trajectory? We assume that the robot can
achieve some arbitrary, finite velocity at each wheel. For simplicity, we further assume that
acceleration is infinite; that is, it takes zero time to reach any desired velocity. Under these
assumptions, the omnidirectional robot can indeed follow the trajectory of figure 3.15. The
transition between the motion of second 1 and second 2, for example, involves only
changes to the wheel velocities.

Because the two-steer has , it must be able to follow the path that would result
from projecting this trajectory into timeless workspace. However, it cannot follow this 4D
trajectory. Even if steering velocity is finite and arbitrary, although the two-steer would be
able to change steering speed instantly, it would have to wait for the angle of the steerable
wheels to change to the desired position before initiating a change in the robot chassis ori-
entation. In short, the two-steer requires changes to internal degrees of freedom and
because these changes take time, arbitrary trajectories are not attainable. Figure 3.16
depicts the most similar trajectory that a two-steer can achieve. In contrast to the desired
three phases of motion, this trajectory has five phases. 

3.5 Beyond Basic Kinematics

The above discussion of mobile robot kinematics is only an introduction to a far richer
topic. When speed and force are also considered, as is particularly necessary in the case of
high-speed mobile robots, dynamic constraints must be expressed in addition to kinematic
constraints. Furthermore, many mobile robots such as tank-type chassis and four-wheel
slip/skid systems violate the kinematic models above. When analyzing such systems, it is
often necessary to explicitly model the dynamics of viscous friction between the robot and
the ground plane. 

More significantly, the kinematic analysis of a mobile robot system provides results
concerning the theoretical workspace of that mobile robot. However to effectively move in
this workspace a mobile robot must have appropriate actuation of its degrees of freedom.
This problem, called motorization, requires further analysis of the forces that must be
actively supplied to realize the kinematic range of motion available to the robot.

In addition to motorization, there is the question of controllability: under what condi-
tions can a mobile robot travel from the initial pose to the goal pose in bounded time?
Answering this question requires knowledge – both knowledge of the robot kinematics and
knowledge of the control systems that can be used to actuate the mobile robot. Mobile robot
control is therefore a return to the practical question of designing a real-world control algo-
rithm that can drive the robot from pose to pose using the trajectories demanded for the
application.
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3.6 Motion Control (Kinematic Control)

As seen above, motion control might not be an easy task for nonholonomic systems. How-
ever, it has been studied by various research groups, for example, [8, 39, 52, 53, 137] and
some adequate solutions for motion control of a mobile robot system are available.

3.6.1   Open loop control (trajectory-following)
The objective of a kinematic controller is to follow a trajectory described by its position or
velocity profile as a function of time. This is often done by dividing the trajectory (path) in
motion segments of clearly defined shape, for example, straight lines and segments of a cir-
cle. The control problem is thus to precompute a smooth trajectory based on line and circle
segments which drives the robot from the initial position to the final position (figure 3.18).
This approach can be regarded as open-loop motion control, because the measured robot
position is not fed back for velocity or position control. It has several disadvantages: 

• It is not at all an easy task to precompute a feasible trajectory if all limitations and con-
straints of the robot’s velocities and accelerations have to be considered.

• The robot will not automatically adapt or correct the trajectory if dynamic changes of
the environment occur.

Figure 3.17
Typical situation for feedback control of a mobile robot
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• The resulting trajectories are usually not smooth, because the transitions from one tra-
jectory segment to another are, for most of the commonly used segments (e.g., lines and
part of circles), not smooth. This means there is a discontinuity in the robot’s accelera-
tion.

3.6.2   Feedback control
A more appropriate approach in motion control of a mobile robot is to use a real-state feed-
back controller. With such a controller the robot’s path-planning task is reduced to setting
intermediate positions (subgoals) lying on the requested path. One useful solution for a sta-
bilizing feedback control of differential-drive mobile robots is presented in section 3.6.2.1.
It is very similar to the controllers presented in [39, 100]. Others can be found in [8, 52, 53,
137].

3.6.2.1   Problem statement
Consider the situation shown in figure 3.17, with an arbitrary position and orientation of
the robot and a predefined goal position and orientation. The actual pose error vector given
in the robot reference frame  is  with , and  being the goal
coordinates of the robot. 

Figure 3.18
Open-loop control of a mobile robot based on straight lines and circular trajectory segments.
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The task of the controller layout is to find a control matrix , if it exists

       with  (3.45)

such that the control of  and  

 (3.46)

drives the error  toward zero.2

 (3.47)

2. Remember that v(t) is always heading in the XR direction of the robot’s reference frame due to the
nonholonomic constraint.

K

Figure 3.19
Robot kinematics and its frames of interests.
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3.6.2.2   Kinematic model
We assume, without loss of generality, that the goal is at the origin of the inertial frame (fig-
ure 3.19). In the following the position vector  is always represented in the inertial
frame.

The kinematics of a differential-drive mobile robot described in the inertial frame
 is given by

 (3.48)

where  and  are the linear velocities in the direction of the  and  of the inertial
frame.

Let  denote the angle between the xR axis of the robot’s reference frame and the vector
 connecting the center of the axle of the wheels with the final position. If , where

 (3.49)

then consider the coordinate transformation into polar coordinates with its origin at the goal
position.

 (3.50)

 (3.51)

 (3.52)

This yields a system description, in the new polar coordinates, using a matrix equation

 (3.53)

where  is the distance between the center of the robot’s wheel axle and the goal position,

x y θ, ,[ ]T

XI YI θ, ,{ }

x·

y·

θ·

I
θcos 0
θsin 0

0 1

v

ω
=

x· y· XI YI

α
x̂ α I1∈

I1
π
2
---–

π
2
---,

=

ρ ∆x2 ∆y2+=

α θ– 2 ∆y ∆x,( )atan+=

β θ– α–=

ρ·

α·

β·

αcos– 0
αsin

ρ
----------- 1–

αsin
ρ

-----------– 0

v

ω
=

ρ



Mobile Robot Kinematics 85

 denotes the angle between the  axis of the robot reference frame, and the  axis asso-
ciated with the final position  and  are the tangent and the angular velocity respectively.

On the other hand, if , where

 (3.54)

redefining the forward direction of the robot by setting , we obtain a system
described by a matrix equation of the form

 (3.55)

3.6.2.3   Remarks on the kinematic model in polar coordinates [eq. (3.53) and (3.55)]

• The coordinate transformation is not defined at ; as in such a point the deter-
minant of the Jacobian matrix of the transformation is not defined, that is unbounded.

• For  the forward direction of the robot points toward the goal, for  it is the
reverse direction.

• By properly defining the forward direction of the robot at its initial configuration, it is
always possible to have  at . However, this does not mean that  remains
in  for all time . Hence, to avoid that the robot changes direction during approaching
the goal, it is necessary to determine, if possible, the controller in such a way that 
for all , whenever . The same applies for the reverse direction (see stability
issues below).

3.6.2.4   The control law
The control signals  and  must now be designed to drive the robot from its actual con-
figuration, say , to the goal position. It is obvious that equation (3.53) presents
a discontinuity at ; thus the theorem of Brockett does not obstruct smooth stabiliz-
ability.

If we consider now the linear control law

 (3.56)

 (3.57)
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we get with equation (3.53) a closed-loop system described by

 (3.58)

The system does not have any singularity at  and has a unique equilibrium point
at . Thus it will drive the robot to this point, which is the goal posi-
tion.

• In the Cartesian coordinate system the control law [equation (3.57)] leads to equations
which are not defined at .

• Be aware of the fact that the angles  and  have always to be expressed in the range
.

• Observe that the control signal  has always a constant sign, that is, it is positive when-
ever  and it is always negative otherwise. This implies that the robot performs
its parking maneuver always in a single direction and without reversing its motion.

In figure 3.20 you find the resulting paths when the robot is initially on a circle in the
plane. All movements have smooth trajectories toward the goal in the center. The con-

trol parameters for this simulation were set to

.  (3.59)

3.6.2.5   Local stability issue
It can further be shown, that the closed-loop control system [equation (3.58)] is locally
exponentially stable if

 ;     ;     (3.60)

Proof:
Linearized around the equilibrium ( , ) position, equation (3.58) can

be written as
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Figure 3.20
Resulting paths when the robot is initially on the unit circle in the x,y plane.
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hence it is locally exponentially stable if the eigenvalues of the matrix 

 (3.62)

all have a negative real part. The characteristic polynomial of the matrix  is

 (3.63)

and all roots have negative real part if

 ;     ;     (3.64)

which proves the claim.
For robust position control, it might be advisable to apply the strong stability condition,

which ensures that the robot does not change direction during its approach to the goal:

 ;     ;     (3.65)

This implies that  for all t, whenever  and  for all , whenever
 respectively. This strong stability condition has also been verified in applica-

tions.
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4 Perception

One of the most important tasks of an autonomous system of any kind is to acquire knowl-
edge about its environment. This is done by taking measurements using various sensors and
then extracting meaningful information from those measurements. 

In this chapter we present the most common sensors used in mobile robots and then dis-
cuss strategies for extracting information from the sensors. For more detailed information
about many of the sensors used on mobile robots, refer to the comprehensive book Sensors
for Mobile Robots by H.R. Everett [15].

4.1 Sensors for Mobile Robots

There are a wide variety of sensors used in mobile robots (figure 4.1). Some sensors are
used to measure simple values like the internal temperature of a robot’s electronics or the
rotational speed of the motors. Other, more sophisticated sensors can be used to acquire
information about the robot’s environment or even to directly measure a robot’s global
position. In this chapter we focus primarily on sensors used to extract information about the
robot’s environment. Because a mobile robot moves around, it will frequently encounter
unforeseen environmental characteristics, and therefore such sensing is particularly critical.
We begin with a functional classification of sensors. Then, after presenting basic tools for
describing a sensor’s performance, we proceed to describe selected sensors in detail.

4.1.1   Sensor classification
We classify sensors using two important functional axes: proprioceptive/exteroceptive and
passive/active.

Proprioceptive sensors measure values internal to the system (robot); for example,
motor speed, wheel load, robot arm joint angles, battery voltage.

Exteroceptive sensors acquire information from the robot’s environment; for example,
distance measurements, light intensity, sound amplitude. Hence exteroceptive sensor mea-
surements are interpreted by the robot in order to extract meaningful environmental fea-
tures.
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Passive sensors measure ambient environmental energy entering the sensor. Examples
of passive sensors include temperature probes, microphones, and CCD or CMOS cameras.

Active sensors emit energy into the environment, then measure the environmental reac-
tion. Because active sensors can manage more controlled interactions with the environ-
ment, they often achieve superior performance. However, active sensing introduces several
risks: the outbound energy may affect the very characteristics that the sensor is attempting
to measure. Furthermore, an active sensor may suffer from interference between its signal

Figure 4.1
Examples of robots with multi-sensor systems: (a) HelpMate from Transition Research Corporation;
(b) B21 from Real World Interface; (c) BIBA Robot, BlueBotics SA. 

b)

c)

Sonar Sensors

Pan-Tilt
Stereo Camera

IR Sensors

Pan-Tilt
Camera

Omnidirectional
Camera

IMU
Inertial

Measurement
Unit

Sonar
Sensors

Laser
Range
Scanner

Bumper

Emergency
Stop

Button

Wheel
Encoders

a)



Perception 91

and those beyond its control. For example, signals emitted by other nearby robots, or sim-
ilar sensors on the same robot, may influence the resulting measurements. Examples of
active sensors include wheel quadrature encoders, ultrasonic sensors, and laser rangefind-
ers.

Table 4.1 provides a classification of the most useful sensors for mobile robot applica-
tions. The most interesting sensors are discussed in this chapter.

Table 4.1 
Classification of sensors used in mobile robotics applications

General classification
(typical use)

Sensor
Sensor System

PC or 
EC A or P

Tactile sensors
(detection of physical contact or 
closeness; security switches)

Contact switches, bumpers
Optical barriers
Noncontact proximity sensors

EC
EC
EC

P
A
A

Wheel/motor sensors
(wheel/motor speed and position)

Brush encoders
Potentiometers
Synchros, resolvers
Optical encoders
Magnetic encoders
Inductive encoders
Capacitive encoders

PC
PC
PC
PC
PC
PC
PC

P
P
A
A
A
A
A

Heading sensors
(orientation of the robot in relation to 
a fixed reference frame)

Compass
Gyroscopes
Inclinometers

EC
PC
EC

P
P
A/P

Ground-based beacons
(localization in a fixed reference 
frame)

GPS
Active optical or RF beacons
Active ultrasonic beacons
Reflective beacons

EC
EC
EC
EC

A
A
A
A

Active ranging
(reflectivity, time-of-flight, and geo-
metric triangulation)

Reflectivity sensors
Ultrasonic sensor
Laser rangefinder
Optical triangulation (1D)
Structured light (2D)

EC
EC
EC
EC
EC

A
A
A
A
A

Motion/speed sensors
(speed relative to fixed or moving 
objects)

Doppler radar
Doppler sound

EC
EC

A
A

Vision-based sensors
(visual ranging, whole-image analy-
sis, segmentation, object recognition)

CCD/CMOS camera(s)
Visual ranging packages
Object tracking packages

EC P

A, active; P, passive; P/A, passive/active; PC, proprioceptive; EC, exteroceptive. 
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The sensor classes in table 4.1 are arranged in ascending order of complexity and
descending order of technological maturity. Tactile sensors and proprioceptive sensors are
critical to virtually all mobile robots, and are well understood and easily implemented.
Commercial quadrature encoders, for example, may be purchased as part of a gear-motor
assembly used in a mobile robot. At the other extreme, visual interpretation by means of
one or more CCD/CMOS cameras provides a broad array of potential functionalities, from
obstacle avoidance and localization to human face recognition. However, commercially
available sensor units that provide visual functionalities are only now beginning to emerge
[90, 160].

4.1.2   Characterizing sensor performance
The sensors we describe in this chapter vary greatly in their performance characteristics.
Some sensors provide extreme accuracy in well-controlled laboratory settings, but are
overcome with error when subjected to real-world environmental variations. Other sensors
provide narrow, high-precision data in a wide variety of settings. In order to quantify such
performance characteristics, first we formally define the sensor performance terminology
that will be valuable throughout the rest of this chapter.

4.1.2.1   Basic sensor response ratings
A number of sensor characteristics can be rated quantitatively in a laboratory setting. Such
performance ratings will necessarily be best-case scenarios when the sensor is placed on a
real-world robot, but are nevertheless useful.

Dynamic range is used to measure the spread between the lower and upper limits of
input values to the sensor while maintaining normal sensor operation. Formally, the
dynamic range is the ratio of the maximum input value to the minimum measurable input
value. Because this raw ratio can be unwieldy, it is usually measured in decibels, which are
computed as ten times the common logarithm of the dynamic range. However, there is
potential confusion in the calculation of decibels, which are meant to measure the ratio
between powers, such as watts or horsepower. Suppose your sensor measures motor current
and can register values from a minimum of 1 mA to 20 Amps. The dynamic range of this
current sensor is defined as

 (4.1)

Now suppose you have a voltage sensor that measures the voltage of your robot’s bat-
tery, measuring any value from 1 mV to 20 V. Voltage is not a unit of power, but the square
of voltage is proportional to power. Therefore, we use 20 instead of 10:

10
20

0.001
------------- 43 dB=log⋅
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 (4.2)

Range is also an important rating in mobile robot applications because often robot sen-
sors operate in environments where they are frequently exposed to input values beyond
their working range. In such cases, it is critical to understand how the sensor will respond.
For example, an optical rangefinder will have a minimum operating range and can thus pro-
vide spurious data when measurements are taken with the object closer than that minimum.

Resolution is the minimum difference between two values that can be detected by a sen-
sor. Usually, the lower limit of the dynamic range of a sensor is equal to its resolution.
However, in the case of digital sensors, this is not necessarily so. For example, suppose that
you have a sensor that measures voltage, performs an analog-to-digital (A/D) conversion,
and outputs the converted value as an 8-bit number linearly corresponding to between 0 and
5 V. If this sensor is truly linear, then it has  total output values, or a resolution of

.   
Linearity is an important measure governing the behavior of the sensor’s output signal

as the input signal varies. A linear response indicates that if two inputs x and y result in the
two outputs  and , then for any values  and , . This
means that a plot of the sensor’s input/output response is simply a straight line. 

Bandwidth or frequency is used to measure the speed with which a sensor can provide a
stream of readings. Formally, the number of measurements per second is defined as the sen-
sor’s frequency in hertz. Because of the dynamics of moving through their environment,
mobile robots often are limited in maximum speed by the bandwidth of their obstacle detec-
tion sensors. Thus, increasing the bandwidth of ranging and vision-based sensors has been
a high-priority goal in the robotics community.

4.1.2.2   In situ sensor performance
The above sensor characteristics can be reasonably measured in a laboratory environment
with confident extrapolation to performance in real-world deployment. However, a number
of important measures cannot be reliably acquired without deep understanding of the com-
plex interaction between all environmental characteristics and the sensors in question. This
is most relevant to the most sophisticated sensors, including active ranging sensors and
visual interpretation sensors.

Sensitivity itself is a desirable trait. This is a measure of the degree to which an incre-
mental change in the target input signal changes the output signal. Formally, sensitivity is
the ratio of output change to input change. Unfortunately, however, the sensitivity of
exteroceptive sensors is often confounded by undesirable sensitivity and performance cou-
pling to other environmental parameters.

20
20

0.001
------------- 86 dB=log⋅

28 1–
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Cross-sensitivity is the technical term for sensitivity to environmental parameters that
are orthogonal to the target parameters for the sensor. For example, a flux-gate compass can
demonstrate high sensitivity to magnetic north and is therefore of use for mobile robot nav-
igation. However, the compass will also demonstrate high sensitivity to ferrous building
materials, so much so that its cross-sensitivity often makes the sensor useless in some
indoor environments. High cross-sensitivity of a sensor is generally undesirable, especially
when it cannot be modeled.

Error of a sensor is defined as the difference between the sensor’s output measurements
and the true values being measured, within some specific operating context. Given a true
value v and a measured value m, we can define error as . 

Accuracy is defined as the degree of conformity between the sensor’s measurement and
the true value, and is often expressed as a proportion of the true value (e.g., 97.5% accu-
racy). Thus small error corresponds to high accuracy and vice versa:

 (4.3)

Of course, obtaining the ground truth, , can be difficult or impossible, and so establish-
ing a confident characterization of sensor accuracy can be problematic. Further, it is impor-
tant to distinguish between two different sources of error:

Systematic errors are caused by factors or processes that can in theory be modeled.
These errors are, therefore, deterministic (i.e., predictable). Poor calibration of a laser
rangefinder, an unmodeled slope of a hallway floor, and a bent stereo camera head due to
an earlier collision are all possible causes of systematic sensor errors.

Random errors cannot be predicted using a sophisticated model nor can they be miti-
gated by more precise sensor machinery. These errors can only be described in probabilistic
terms (i.e., stochastically). Hue instability in a color camera, spurious rangefinding errors,
and black level noise in a camera are all examples of random errors.

Precision is often confused with accuracy, and now we have the tools to clearly distin-
guish these two terms. Intuitively, high precision relates to reproducibility of the sensor
results. For example, one sensor taking multiple readings of the same environmental state
has high precision if it produces the same output. In another example, multiple copies of
this sensor taking readings of the same environmental state have high precision if their out-
puts agree. Precision does not, however, have any bearing on the accuracy of the sensor’s
output with respect to the true value being measured. Suppose that the random error of a
sensor is characterized by some mean value  and a standard deviation . The formal def-
inition of precision is the ratio of the sensor’s output range to the standard deviation:

error m v–=

accuracy 1
error

v
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 (4.4)

Note that only  and not  has impact on precision. In contrast, mean error  is
directly proportional to overall sensor error and inversely proportional to sensor accuracy.

4.1.2.3   Characterizing error: the challenges in mobile robotics
Mobile robots depend heavily on exteroceptive sensors. Many of these sensors concentrate
on a central task for the robot: acquiring information on objects in the robot’s immediate
vicinity so that it may interpret the state of its surroundings. Of course, these “objects” sur-
rounding the robot are all detected from the viewpoint of its local reference frame. Since
the systems we study are mobile, their ever-changing position and their motion have a sig-
nificant impact on overall sensor behavior. In this section, empowered with the terminol-
ogy of the earlier discussions, we describe how dramatically the sensor error of a mobile
robot disagrees with the ideal picture drawn in the previous section.

Blurring of systematic and random errors. Active ranging sensors tend to have failure
modes that are triggered largely by specific relative positions of the sensor and environment
targets. For example, a sonar sensor will produce specular reflections, producing grossly
inaccurate measurements of range, at specific angles to a smooth sheetrock wall. During
motion of the robot, such relative angles occur at stochastic intervals. This is especially true
in a mobile robot outfitted with a ring of multiple sonars. The chances of one sonar entering
this error mode during robot motion is high. From the perspective of the moving robot, the
sonar measurement error is a random error in this case. Yet, if the robot were to stop,
becoming motionless, then a very different error modality is possible. If the robot’s static
position causes a particular sonar to fail in this manner, the sonar will fail consistently and
will tend to return precisely the same (and incorrect!) reading time after time. Once the
robot is motionless, the error appears to be systematic and of high precision.

The fundamental mechanism at work here is the cross-sensitivity of mobile robot sen-
sors to robot pose and robot-environment dynamics. The models for such cross-sensitivity
are not, in an underlying sense, truly random. However, these physical interrelationships
are rarely modeled and therefore, from the point of view of an incomplete model, the errors
appear random during motion and systematic when the robot is at rest.

Sonar is not the only sensor subject to this blurring of systematic and random error
modality. Visual interpretation through the use of a CCD camera is also highly susceptible
to robot motion and position because of camera dependence on lighting changes, lighting
specularity (e.g., glare), and reflections. The important point is to realize that, while sys-
tematic error and random error are well-defined in a controlled setting, the mobile robot can
exhibit error characteristics that bridge the gap between deterministic and stochastic error
mechanisms.

precision
range

σ
---------------=

σ µ µ
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Multimodal error distributions. It is common to characterize the behavior of a sensor’s
random error in terms of a probability distribution over various output values. In general,
one knows very little about the causes of random error and therefore several simplifying
assumptions are commonly used. For example, we can assume that the error is zero-mean,
in that it symmetrically generates both positive and negative measurement error. We can
go even further and assume that the probability density curve is Gaussian. Although we dis-
cuss the mathematics of this in detail in section 4.2, it is important for now to recognize the
fact that one frequently assumes symmetry as well as unimodal distribution. This means
that measuring the correct value is most probable, and any measurement that is further
away from the correct value is less likely than any measurement that is closer to the correct
value. These are strong assumptions that enable powerful mathematical principles to be
applied to mobile robot problems, but it is important to realize how wrong these assump-
tions usually are.

Consider, for example, the sonar sensor once again. When ranging an object that reflects
the sound signal well, the sonar will exhibit high accuracy, and will induce random error
based on noise, for example, in the timing circuitry. This portion of its sensor behavior will
exhibit error characteristics that are fairly symmetric and unimodal. However, when the
sonar sensor is moving through an environment and is sometimes faced with materials that
cause coherent reflection rather than returning the sound signal to the sonar sensor, then the
sonar will grossly overestimate the distance to the object. In such cases, the error will be
biased toward positive measurement error and will be far from the correct value. The error
is not strictly systematic, and so we are left modeling it as a probability distribution of
random error. So the sonar sensor has two separate types of operational modes, one in
which the signal does return and some random error is possible, and the second in which
the signal returns after a multipath reflection, and gross overestimation error occurs. The
probability distribution could easily be at least bimodal in this case, and since overestima-
tion is more common than underestimation it will also be asymmetric.

As a second example, consider ranging via stereo vision. Once again, we can identify
two modes of operation. If the stereo vision system correctly correlates two images, then
the resulting random error will be caused by camera noise and will limit the measurement
accuracy. But the stereo vision system can also correlate two images incorrectly, matching
two fence posts, for example, that are not the same post in the real world. In such a case
stereo vision will exhibit gross measurement error, and one can easily imagine such behav-
ior violating both the unimodal and the symmetric assumptions.

The thesis of this section is that sensors in a mobile robot may be subject to multiple
modes of operation and, when the sensor error is characterized, unimodality and symmetry
may be grossly violated. Nonetheless, as we shall see, many successful mobile robot sys-
tems make use of these simplifying assumptions and the resulting mathematical techniques
with great empirical success.
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The above sections have presented a terminology with which we can characterize the
advantages and disadvantages of various mobile robot sensors. In the following sections,
we do the same for a sampling of the most commonly used mobile robot sensors today.

4.1.3   Wheel/motor sensors
Wheel/motor sensors are devices used to measure the internal state and dynamics of a
mobile robot. These sensors have vast applications outside of mobile robotics and, as a
result, mobile robotics has enjoyed the benefits of high-quality, low-cost wheel and motor
sensors that offer excellent resolution. In the next section, we sample just one such sensor,
the optical incremental encoder.

4.1.3.1   Optical encoders
Optical incremental encoders have become the most popular device for measuring angular
speed and position within a motor drive or at the shaft of a wheel or steering mechanism.
In mobile robotics, encoders are used to control the position or speed of wheels and other
motor-driven joints. Because these sensors are proprioceptive, their estimate of position is
best in the reference frame of the robot and, when applied to the problem of robot localiza-
tion, significant corrections are required as, discussed in chapter 5. 

An optical encoder is basically a mechanical light chopper that produces a certain
number of sine or square wave pulses for each shaft revolution. It consists of an illumina-
tion source, a fixed grating that masks the light, a rotor disc with a fine optical grid that
rotates with the shaft, and fixed optical detectors. As the rotor moves, the amount of light
striking the optical detectors varies based on the alignment of the fixed and moving grat-
ings. In robotics, the resulting sine wave is transformed into a discrete square wave using a
threshold to choose between light and dark states. Resolution is measured in cycles per rev-
olution (CPR). The minimum angular resolution can be readily computed from an
encoder’s CPR rating. A typical encoder in mobile robotics may have 2000 CPR, while the
optical encoder industry can readily manufacture encoders with 10000 CPR. In terms of
required bandwidth, it is of course critical that the encoder be sufficiently fast to count at
the shaft spin speeds that are expected. Industrial optical encoders present no bandwidth
limitation to mobile robot applications.

Usually in mobile robotics the quadrature encoder is used. In this case, a second illumi-
nation and detector pair is placed 90 degrees shifted with respect to the original in terms of
the rotor disc. The resulting twin square waves, shown in figure 4.2, provide significantly
more information. The ordering of which square wave produces a rising edge first identifies
the direction of rotation. Furthermore, the four detectably different states improve the res-
olution by a factor of four with no change to the rotor disc. Thus, a 2000 CPR encoder in
quadrature yields 8000 counts. Further improvement is possible by retaining the sinusoidal
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wave measured by the optical detectors and performing sophisticated interpolation. Such
methods, although rare in mobile robotics, can yield 1000-fold improvements in resolution.

As with most proprioceptive sensors, encoders are generally in the controlled environ-
ment of a mobile robot’s internal structure, and so systematic error and cross-sensitivity can
be engineered away. The accuracy of optical encoders is often assumed to be 100% and,
although this may not be entirely correct, any errors at the level of an optical encoder are
dwarfed by errors downstream of the motor shaft.

4.1.4   Heading sensors
Heading sensors can be proprioceptive (gyroscope, inclinometer) or exteroceptive (com-
pass). They are used to determine the robot’s orientation and inclination. They allow us,
together with appropriate velocity information, to integrate the movement to a position esti-
mate. This procedure, which has its roots in vessel and ship navigation, is called dead reck-
oning.

4.1.4.1   Compasses
The two most common modern sensors for measuring the direction of a magnetic field are
the Hall effect and flux gate compasses. Each has advantages and disadvantages, as
described below.

The Hall effect describes the behavior of electric potential in a semiconductor when in
the presence of a magnetic field. When a constant current is applied across the length of a
semiconductor, there will be a voltage difference in the perpendicular direction, across the
semiconductor’s width, based on the relative orientation of the semiconductor to magnetic
flux lines. In addition, the sign of the voltage potential identifies the direction of the mag-
netic field. Thus, a single semiconductor provides a measurement of flux and direction
along one dimension. Hall effect digital compasses are popular in mobile robotics, and con-

Figure 4.2
Quadrature optical wheel encoder: The observed phase relationship between channel A and B pulse
trains are used to determine the direction of the rotation. A single slot in the outer track generates a
reference (index) pulse per revolution.
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tain two such semiconductors at right angles, providing two axes of magnetic field (thresh-
olded) direction, thereby yielding one of eight possible compass directions. The
instruments are inexpensive but also suffer from a range of disadvantages. Resolution of a
digital Hall effect compass is poor. Internal sources of error include the nonlinearity of the
basic sensor and systematic bias errors at the semiconductor level. The resulting circuitry
must perform significant filtering, and this lowers the bandwidth of Hall effect compasses
to values that are slow in mobile robot terms. For example, the Hall effect compass pictured
in figure 4.3 needs 2.5 seconds to settle after a 90 degree spin.

The flux gate compass operates on a different principle. Two small coils are wound on
ferrite cores and are fixed perpendicular to one another. When alternating current is acti-
vated in both coils, the magnetic field causes shifts in the phase depending on its relative
alignment with each coil. By measuring both phase shifts, the direction of the magnetic
field in two dimensions can be computed. The flux gate compass can accurately measure
the strength of a magnetic field and has improved resolution and accuracy; however, it is
both larger and more expensive than a Hall effect compass. 

Regardless of the type of compass used, a major drawback concerning the use of the
Earth’s magnetic field for mobile robot applications involves disturbance of that magnetic
field by other magnetic objects and man-made structures, as well as the bandwidth limita-
tions of electronic compasses and their susceptibility to vibration. Particularly in indoor
environments, mobile robotics applications have often avoided the use of compasses,
although a compass can conceivably provide useful local orientation information indoors,
even in the presence of steel structures.

4.1.4.2   Gyroscopes
Gyroscopes are heading sensors which preserve their orientation in relation to a fixed ref-
erence frame. Thus they provide an absolute measure for the heading of a mobile system.

Figure 4.3
Digital compass: Sensors such as the digital/analog Hall effect sensor shown, available from Dins-
more (http://dinsmoregroup.com/dico), enable inexpensive (< $ 15) sensing of magnetic fields.
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Gyroscopes can be classified in two categories, mechanical gyroscopes and optical gyro-
scopes.

Mechanical gyroscopes. The concept of a mechanical gyroscope relies on the inertial
properties of a fast-spinning rotor. The property of interest is known as the gyroscopic pre-
cession. If you try to rotate a fast-spinning wheel around its vertical axis, you will feel a
harsh reaction in the horizontal axis. This is due to the angular momentum associated with
a spinning wheel and will keep the axis of the gyroscope inertially stable. The reactive
torque τ and thus the tracking stability with the inertial frame are proportional to the spin-
ning speed , the precession speed , and the wheel’s inertia .

 (4.5)

By arranging a spinning wheel, as seen in figure 4.4, no torque can be transmitted from
the outer pivot to the wheel axis. The spinning axis will therefore be space-stable (i.e., fixed
in an inertial reference frame). Nevertheless, the remaining friction in the bearings of the
gyro axis introduce small torques, thus limiting the long-term space stability and introduc-
ing small errors over time. A high quality mechanical gyroscope can cost up to $100,000
and has an angular drift of about 0.1 degrees in 6 hours.

For navigation, the spinning axis has to be initially selected. If the spinning axis is
aligned with the north-south meridian, the earth’s rotation has no effect on the gyro’s hor-
izontal axis. If it points east-west, the horizontal axis reads the earth rotation.

ω Ω I

τ IωΩ=

Figure 4.4
Two-axis mechanical gyroscope.
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Rate gyros have the same basic arrangement as shown in figure 4.4 but with a slight
modification. The gimbals are restrained by a torsional spring with additional viscous
damping. This enables the sensor to measure angular speeds instead of absolute orientation.

Optical gyroscopes. Optical gyroscopes are a relatively new innovation. Commercial use
began in the early 1980s when they were first installed in aircraft. Optical gyroscopes are
angular speed sensors that use two monochromatic light beams, or lasers, emitted from the
same source, instead of moving, mechanical parts. They work on the principle that the
speed of light remains unchanged and, therefore, geometric change can cause light to take
a varying amount of time to reach its destination. One laser beam is sent traveling clockwise
through a fiber while the other travels counterclockwise. Because the laser traveling in the
direction of rotation has a slightly shorter path, it will have a higher frequency. The differ-
ence in frequency  of the two beams is a proportional to the angular velocity  of the
cylinder. New solid-state optical gyroscopes based on the same principle are build using
microfabrication technology, thereby providing heading information with resolution and
bandwidth far beyond the needs of mobile robotic applications. Bandwidth, for instance,
can easily exceed 100 kHz while resolution can be smaller than 0.0001 degrees/hr.

4.1.5   Ground-based beacons
One elegant approach to solving the localization problem in mobile robotics is to use active
or passive beacons. Using the interaction of on-board sensors and the environmental bea-
cons, the robot can identify its position precisely. Although the general intuition is identical
to that of early human navigation beacons, such as stars, mountains, and lighthouses,
modern technology has enabled sensors to localize an outdoor robot with accuracies of
better than 5 cm within areas that are kilometers in size. 

In the following section, we describe one such beacon system, the global positioning
system (GPS), which is extremely effective for outdoor ground-based and flying robots.
Indoor beacon systems have been generally less successful for a number of reasons. The
expense of environmental modification in an indoor setting is not amortized over an
extremely large useful area, as it is, for example, in the case of the GPS. Furthermore,
indoor environments offer significant challenges not seen outdoors, including multipath
and environmental dynamics. A laser-based indoor beacon system, for example, must dis-
ambiguate the one true laser signal from possibly tens of other powerful signals that have
reflected off of walls, smooth floors, and doors. Confounding this, humans and other obsta-
cles may be constantly changing the environment, for example, occluding the one true path
from the beacon to the robot. In commercial applications, such as manufacturing plants, the
environment can be carefully controlled to ensure success. In less structured indoor set-
tings, beacons have nonetheless been used, and the problems are mitigated by careful
beacon placement and the use of passive sensing modalities.

∆f Ω
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4.1.5.1   The global positioning system
The global positioning system (GPS) was initially developed for military use but is now
freely available for civilian navigation. There are at least twenty-four operational GPS sat-
ellites at all times. The satellites orbit every 12 hours at a height of 20.190 km. Four satel-
lites are located in each of six planes inclined 55 degrees with respect to the plane of the
earth’s equator (figure 4.5).

Each satellite continuously transmits data that indicate its location and the current time.
Therefore, GPS receivers are completely passive but exteroceptive sensors. The GPS sat-
ellites synchronize their transmissions so that their signals are sent at the same time. When
a GPS receiver reads the transmission of two or more satellites, the arrival time differences
inform the receiver as to its relative distance to each satellite. By combining information
regarding the arrival time and instantaneous location of four satellites, the receiver can infer
its own position. In theory, such triangulation requires only three data points. However,
timing is extremely critical in the GPS application because the time intervals being mea-
sured are in nanoseconds. It is, of course, mandatory that the satellites be well synchro-
nized. To this end, they are updated by ground stations regularly and each satellite carries
on-board atomic clocks for timing. 

Figure 4.5
Calculation of position and heading based on GPS.
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The GPS receiver clock is also important so that the travel time of each satellite’s trans-
mission can be accurately measured. But GPS receivers have a simple quartz clock. So,
although three satellites would ideally provide position in three axes, the GPS receiver
requires four satellites, using the additional information to solve for four variables: three
position axes plus a time correction.

The fact that the GPS receiver must read the transmission of four satellites simulta-
neously is a significant limitation. GPS satellite transmissions are extremely low-power,
and reading them successfully requires direct line-of-sight communication with the satel-
lite. Thus, in confined spaces such as city blocks with tall buildings or in dense forests, one
is unlikely to receive four satellites reliably. Of course, most indoor spaces will also fail to
provide sufficient visibility of the sky for a GPS receiver to function. For these reasons, the
GPS has been a popular sensor in mobile robotics, but has been relegated to projects involv-
ing mobile robot traversal of wide-open spaces and autonomous flying machines.

A number of factors affect the performance of a localization sensor that makes use of
the GPS. First, it is important to understand that, because of the specific orbital paths of the
GPS satellites, coverage is not geometrically identical in different portions of the Earth and
therefore resolution is not uniform. Specifically, at the North and South Poles, the satellites
are very close to the horizon and, thus, while resolution in the latitude and longitude direc-
tions is good, resolution of altitude is relatively poor as compared to more equatorial loca-
tions.

The second point is that GPS satellites are merely an information source. They can be
employed with various strategies in order to achieve dramatically different levels of local-
ization resolution. The basic strategy for GPS use, called pseudorange and described
above, generally performs at a resolution of 15 m. An extension of this method is differen-
tial GPS (DGPS), which makes use of a second receiver that is static and at a known exact
position. A number of errors can be corrected using this reference, and so resolution
improves to the order of 1 m or less. A disadvantage of this technique is that the stationary
receiver must be installed, its location must be measured very carefully, and of course the
moving robot must be within kilometers of this static unit in order to benefit from the DGPS
technique.

A further improved strategy is to take into account the phase of the carrier signals of
each received satellite transmission. There are two carriers, at 19 cm and 24 cm, and there-
fore significant improvements in precision are possible when the phase difference between
multiple satellites is measured successfully. Such receivers can achieve 1 cm resolution for
point positions and, with the use of multiple receivers, as in DGPS, sub-1 cm resolution.

A final consideration for mobile robot applications is bandwidth.The GPS will generally
offer no better than 200 to 300 ms latency, and so one can expect no better than 5 Hz GPS
updates. On a fast-moving mobile robot or flying robot, this can mean that local motion
integration will be required for proper control due to GPS latency limitations.
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4.1.6   Active ranging
Active ranging sensors continue to be the most popular sensors in mobile robotics. Many
ranging sensors have a low price point, and, most importantly, all ranging sensors provide
easily interpreted outputs: direct measurements of distance from the robot to objects in its
vicinity. For obstacle detection and avoidance, most mobile robots rely heavily on active
ranging sensors. But the local freespace information provided by ranging sensors can also
be accumulated into representations beyond the robot’s current local reference frame. Thus
active ranging sensors are also commonly found as part of the localization and environmen-
tal modeling processes of mobile robots. It is only with the slow advent of successful visual
interpretation competence that we can expect the class of active ranging sensors to gradu-
ally lose their primacy as the sensor class of choice among mobile roboticists.

Below, we present two time-of-flight active ranging sensors: the ultrasonic sensor and
the laser rangefinder. Then, we present two geometric active ranging sensors: the optical
triangulation sensor and the structured light sensor.

4.1.6.1   Time-of-flight active ranging
Time-of-flight ranging makes use of the propagation speed of sound or an electromagnetic
wave. In general, the travel distance of a sound of electromagnetic wave is given by

 (4.6)

where

 = distance traveled (usually round-trip);

 = speed of wave propagation;

 = time of flight.

It is important to point out that the propagation speed  of sound is approximately
0.3 m/ms whereas the speed of electromagnetic signals is 0.3 m/ns, which is 1 million
times faster. The time of flight for a typical distance, say 3 m, is 10 ms for an ultrasonic
system but only 10 ns for a laser rangefinder. It is thus evident that measuring the time of
flight  with electromagnetic signals is more technologically challenging. This explains
why laser range sensors have only recently become affordable and robust for use on mobile
robots.

The quality of time-of-flight range sensors depends mainly on

• uncertainties in determining the exact time of arrival of the reflected signal;

• inaccuracies in the time-of-flight measurement (particularly with laser range sensors);

• the dispersal cone of the transmitted beam (mainly with ultrasonic range sensors);
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• interaction with the target (e.g., surface absorption, specular reflections);

• variation of propagation speed;

• the speed of the mobile robot and target (in the case of a dynamic target);

As discussed below, each type of time-of-flight sensor is sensitive to a particular subset
of the above list of factors.

The ultrasonic sensor (time-of-flight, sound). The basic principle of an ultrasonic
sensor is to transmit a packet of (ultrasonic) pressure waves and to measure the time it takes
for this wave packet to reflect and return to the receiver. The distance  of the object caus-
ing the reflection can be calculated based on the propagation speed of sound  and the time
of flight .

 (4.7)

The speed of sound c in air is given by

 (4.8)

where

γ = ratio of specific heats;

R = gas constant;

T = temperature in degrees Kelvin.

In air at standard pressure and 20° C the speed of sound is approximately  = 343 m/s.
Figure 4.6 shows the different signal output and input of an ultrasonic sensor. First, a

series of sound pulses are emitted, comprising the wave packet. An integrator also begins
to linearly climb in value, measuring the time from the transmission of these sound waves
to detection of an echo. A threshold value is set for triggering an incoming sound wave as
a valid echo. This threshold is often decreasing in time, because the amplitude of the
expected echo decreases over time based on dispersal as it travels longer. But during trans-
mission of the initial sound pulses and just afterward, the threshold is set very high to sup-
press triggering the echo detector with the outgoing sound pulses. A transducer will
continue to ring for up to several milliseconds after the initial transmission, and this gov-
erns the blanking time of the sensor. Note that if, during the blanking time, the transmitted
sound were to reflect off of an extremely close object and return to the ultrasonic sensor, it
may fail to be detected.
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However, once the blanking interval has passed, the system will detect any above-
threshold reflected sound, triggering a digital signal and producing the distance measure-
ment using the integrator value.

The ultrasonic wave typically has a frequency between 40 and 180 kHz and is usually
generated by a piezo or electrostatic transducer. Often the same unit is used to measure the
reflected signal, although the required blanking interval can be reduced through the use of
separate output and input devices. Frequency can be used to select a useful range when
choosing the appropriate ultrasonic sensor for a mobile robot. Lower frequencies corre-
spond to a longer range, but with the disadvantage of longer post-transmission ringing and,
therefore, the need for longer blanking intervals. Most ultrasonic sensors used by mobile
robots have an effective range of roughly 12 cm to 5 m. The published accuracy of com-
mercial ultrasonic sensors varies between 98% and 99.1%. In mobile robot applications,
specific implementations generally achieve a resolution of approximately 2 cm.

In most cases one may want a narrow opening angle for the sound beam in order to also
obtain precise directional information about objects that are encountered. This is a major
limitation since sound propagates in a cone-like manner (figure 4.7) with opening angles
around 20 to 40 degrees. Consequently, when using ultrasonic ranging one does not acquire
depth data points but, rather, entire regions of constant depth. This means that the sensor
tells us only that there is an object at a certain distance within the area of the measurement
cone. The sensor readings must be plotted as segments of an arc (sphere for 3D) and not as
point measurements (figure 4.8). However, recent research developments show significant
improvement of the measurement quality in using sophisticated echo processing [76].

Ultrasonic sensors suffer from several additional drawbacks, namely in the areas of
error, bandwidth, and cross-sensitivity. The published accuracy values for ultrasonics are

Figure 4.6
Signals of an ultrasonic sensor.
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Figure 4.7
Typical intensity distribution of an ultrasonic sensor.
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Figure 4.8
Typical readings of an ultrasonic system: (a) 360 degree scan; (b) results from different geometric
primitives [23]. Courtesy of John Leonard, MIT.
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nominal values based on successful, perpendicular reflections of the sound wave off of an
acoustically reflective material. This does not capture the effective error modality seen on
a mobile robot moving through its environment. As the ultrasonic transducer’s angle to the
object being ranged varies away from perpendicular, the chances become good that the
sound waves will coherently reflect away from the sensor, just as light at a shallow angle
reflects off of a smooth surface. Therefore, the true error behavior of ultrasonic sensors is
compound, with a well-understood error distribution near the true value in the case of a suc-
cessful retroreflection, and a more poorly understood set of range values that are grossly
larger than the true value in the case of coherent reflection. Of course, the acoustic proper-
ties of the material being ranged have direct impact on the sensor’s performance. Again,
the impact is discrete, with one material possibly failing to produce a reflection that is suf-
ficiently strong to be sensed by the unit. For example, foam, fur, and cloth can, in various
circumstances, acoustically absorb the sound waves.

A final limitation of ultrasonic ranging relates to bandwidth. Particularly in moderately
open spaces, a single ultrasonic sensor has a relatively slow cycle time. For example, mea-
suring the distance to an object that is 3 m away will take such a sensor 20 ms, limiting its
operating speed to 50 Hz. But if the robot has a ring of twenty ultrasonic sensors, each
firing sequentially and measuring to minimize interference between the sensors, then the
ring’s cycle time becomes 0.4 seconds and the overall update frequency of any one sensor
is just 2.5 Hz. For a robot conducting moderate speed motion while avoiding obstacles
using ultrasonics, this update rate can have a measurable impact on the maximum speed
possible while still sensing and avoiding obstacles safely. 

Laser rangefinder (time-of-flight, electromagnetic). The laser rangefinder is a time-of-
flight sensor that achieves significant improvements over the ultrasonic range sensor owing
to the use of laser light instead of sound. This type of sensor consists of a transmitter which
illuminates a target with a collimated beam (e.g., laser), and a receiver capable of detecting
the component of light which is essentially coaxial with the transmitted beam. Often
referred to as optical radar or lidar (light detection and ranging), these devices produce a
range estimate based on the time needed for the light to reach the target and return. A
mechanical mechanism with a mirror sweeps the light beam to cover the required scene in
a plane or even in three dimensions, using a rotating, nodding mirror.

One way to measure the time of flight for the light beam is to use a pulsed laser and then
measure the elapsed time directly, just as in the ultrasonic solution described earlier. Elec-
tronics capable of resolving picoseconds are required in such devices and they are therefore
very expensive. A second method is to measure the beat frequency between a frequency-
modulated continuous wave (FMCW) and its received reflection. Another, even easier
method is to measure the phase shift of the reflected light. We describe this third approach
in detail.
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Phase-shift measurement. Near-infrared light (from a light-emitting diode [LED] or
laser) is collimated and transmitted from the transmitter in figure 4.9 and hits a point P in
the environment. For surfaces having a roughness greater than the wavelength of the inci-
dent light, diffuse reflection will occur, meaning that the light is reflected almost isotropi-
cally. The wavelength of the infrared light emitted is 824 nm and so most surfaces, with the
exception of only highly polished reflecting objects, will be diffuse reflectors. The compo-
nent of the infrared light which falls within the receiving aperture of the sensor will return
almost parallel to the transmitted beam for distant objects.

The sensor transmits 100% amplitude modulated light at a known frequency and mea-
sures the phase shift between the transmitted and reflected signals. Figure 4.10 shows how
this technique can be used to measure range. The wavelength of the modulating signal
obeys the equation  where  is the speed of light and f the modulating frequency.
For  = 5 MHz (as in the AT&T sensor),  = 60 m. The total distance covered by the
emitted light is

Figure 4.9
Schematic of laser rangefinding by phase-shift measurement.

Phase
Measurement

Target

D

L

Transmitter

Transmitted Beam
Reflected Beam

P

Figure 4.10
Range estimation by measuring the phase shift between transmitted and received signals.
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 (4.9)

where  and  are the distances defined in figure 4.9. The required distance , between
the beam splitter and the target, is therefore given by 

 (4.10)

where  is the electronically measured phase difference between the transmitted and
reflected light beams, and  the known modulating wavelength. It can be seen that the
transmission of a single frequency modulated wave can theoretically result in ambiguous
range estimates since, for example, if  = 60 m, a target at a range of 5 m would give an
indistinguishable phase measurement from a target at 65 m, since each phase angle would
be 360 degrees apart. We therefore define an “ambiguity interval” of , but in practice we
note that the range of the sensor is much lower than  due to the attenuation of the signal
in air.

It can be shown that the confidence in the range (phase estimate) is inversely propor-
tional to the square of the received signal amplitude, directly affecting the sensor’s accu-
racy. Hence dark, distant objects will not produce as good range estimates as close, bright
objects.
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Figure 4.11
(a) Schematic drawing of laser range sensor with rotating mirror; (b) Scanning range sensor from EPS
Technologies Inc.; (c) Industrial 180 degree laser range sensor from Sick Inc., Germany
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In figure 4.11 the schematic of a typical 360 degrees laser range sensor and two exam-
ples are shown. figure 4.12 shows a typical range image of a 360 degrees scan taken with
a laser range sensor.

As expected, the angular resolution of laser rangefinders far exceeds that of ultrasonic
sensors. The Sick laser scanner shown in Figure 4.11 achieves an angular resolution of
0.5 degree. Depth resolution is approximately 5 cm, over a range from 5 cm up to 20 m or
more, depending upon the brightness of the object being ranged. This device performs
twenty five 180 degrees scans per second but has no mirror nodding capability for the ver-
tical dimension.

As with ultrasonic ranging sensors, an important error mode involves coherent reflection
of the energy. With light, this will only occur when striking a highly polished surface. Prac-
tically, a mobile robot may encounter such surfaces in the form of a polished desktop, file
cabinet or, of course, a mirror. Unlike ultrasonic sensors, laser rangefinders cannot detect
the presence of optically transparent materials such as glass, and this can be a significant
obstacle in environments, for example, museums, where glass is commonly used.

4.1.6.2   Triangulation-based active ranging
Triangulation-based ranging sensors use geometric properties manifest in their measuring
strategy to establish distance readings to objects. The simplest class of triangulation-based

Figure 4.12
Typical range image of a 2D laser range sensor with a rotating mirror. The length of the lines through
the measurement points indicate the uncertainties.
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rangers are active because they project a known light pattern (e.g., a point, a line, or a tex-
ture) onto the environment. The reflection of the known pattern is captured by a receiver
and, together with known geometric values, the system can use simple triangulation to
establish range measurements. If the receiver measures the position of the reflection along
a single axis, we call the sensor an optical triangulation sensor in 1D. If the receiver mea-
sures the position of the reflection along two orthogonal axes, we call the sensor a struc-
tured light sensor. These two sensor types are described in the two sections below.

Optical triangulation (1D sensor). The principle of optical triangulation in 1D is
straightforward, as depicted in figure 4.13. A collimated beam (e.g., focused infrared LED,
laser beam) is transmitted toward the target. The reflected light is collected by a lens and
projected onto a position-sensitive device (PSD) or linear camera. Given the geometry of
figure 4.13, the distance  is given by

 (4.11)

The distance is proportional to ; therefore the sensor resolution is best for close
objects and becomes poor at a distance. Sensors based on this principle are used in range
sensing up to 1 or 2 m, but also in high-precision industrial measurements with resolutions
far below 1 µm.

Optical triangulation devices can provide relatively high accuracy with very good reso-
lution (for close objects). However, the operating range of such a device is normally fairly
limited by geometry. For example, the optical triangulation sensor pictured in figure 4.14

Figure 4.13
Principle of 1D laser triangulation.
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operates over a distance range of between 8 and 80 cm. It is inexpensive compared to ultra-
sonic and laser rangefinder sensors. Although more limited in range than sonar, the optical
triangulation sensor has high bandwidth and does not suffer from cross-sensitivities that are
more common in the sound domain.

Structured light (2D sensor). If one replaces the linear camera or PSD of an optical tri-
angulation sensor with a 2D receiver such as a CCD or CMOS camera, then one can recover
distance to a large set of points instead of to only one point. The emitter must project a
known pattern, or structured light, onto the environment. Many systems exist which either
project light textures (figure 4.15b) or emit collimated light (possibly laser) by means of a
rotating mirror. Yet another popular alternative is to project a laser stripe (figure 4.15a) by
turning a laser beam into a plane using a prism. Regardless of how it is created, the pro-
jected light has a known structure, and therefore the image taken by the CCD or CMOS
receiver can be filtered to identify the pattern’s reflection. 

Note that the problem of recovering depth is in this case far simpler than the problem of
passive image analysis. In passive image analysis, as we discuss later, existing features in
the environment must be used to perform correlation, while the present method projects a
known pattern upon the environment and thereby avoids the standard correlation problem
altogether. Furthermore, the structured light sensor is an active device so it will continue to
work in dark environments as well as environments in which the objects are featureless
(e.g., uniformly colored and edgeless). In contrast, stereo vision would fail in such texture-
free circumstances.

Figure 4.15c shows a 1D active triangulation geometry. We can examine the trade-off
in the design of triangulation systems by examining the geometry in figure 4.15c. The mea-

Figure 4.14
A commercially available, low-cost optical triangulation sensor: the Sharp GP series infrared
rangefinders provide either analog or digital distance measures and cost only about $ 15.
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sured values in the system are α and u, the distance of the illuminated point from the origin
in the imaging sensor. (Note the imaging sensor here can be a camera or an array of photo
diodes of a position-sensitive device (e.g., a 2D PSD).

From figure 4.15c, simple geometry shows that

 ;     (4.12)

Figure 4.15
(a) Principle of active two dimensional triangulation. (b) Other possible light structures. (c) 1D sche-
matic of the principle. Image (a) and (b) courtesy of Albert-Jan Baerveldt, Halmstad University.
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where  is the distance of the lens to the imaging plane. In the limit, the ratio of image res-
olution to range resolution is defined as the triangulation gain  and from equation (4.12)
is given by

 (4.13)

This shows that the ranging accuracy, for a given image resolution, is proportional to
source/detector separation  and focal length , and decreases with the square of the range

. In a scanning ranging system, there is an additional effect on the ranging accuracy,
caused by the measurement of the projection angle . From equation 4.12 we see that

 (4.14)

We can summarize the effects of the parameters on the sensor accuracy as follows:

• Baseline length ( ): the smaller  is, the more compact the sensor can be. The larger 
is, the better the range resolution will be. Note also that although these sensors do not
suffer from the correspondence problem, the disparity problem still occurs. As the base-
line length  is increased, one introduces the chance that, for close objects, the illumi-
nated point(s) may not be in the receiver’s field of view.

• Detector length and focal length ( ): A larger detector length can provide either a larger
field of view or an improved range resolution or partial benefits for both. Increasing the
detector length, however, means a larger sensor head and worse electrical characteristics
(increase in random error and reduction of bandwidth). Also, a short focal length gives
a large field of view at the expense of accuracy, and vice versa.

At one time, laser stripe-based structured light sensors were common on several mobile
robot bases as an inexpensive alternative to laser rangefinding devices. However, with the
increasing quality of laser rangefinding sensors in the 1990s, the structured light system has
become relegated largely to vision research rather than applied mobile robotics.

4.1.7   Motion/speed sensors
Some sensors measure directly the relative motion between the robot and its environment.
Since such motion sensors detect relative motion, so long as an object is moving relative to
the robot’s reference frame, it will be detected and its speed can be estimated. There are a
number of sensors that inherently measure some aspect of motion or change. For example,
a pyroelectric sensor detects change in heat. When a human walks across the sensor’s field
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of view, his or her motion triggers a change in heat in the sensor’s reference frame. In the
next section, we describe an important type of motion detector based on the Doppler effect.
These sensors represent a well-known technology with decades of general applications
behind them. For fast-moving mobile robots such as autonomous highway vehicles and
unmanned flying vehicles, Doppler-based motion detectors are the obstacle detection
sensor of choice. 

4.1.7.1   Doppler effect-based sensing (radar or sound)
Anyone who has noticed the change in siren pitch that occurs when an approaching fire
engine passes by and recedes is familiar with the Doppler effect. 

A transmitter emits an electromagnetic or sound wave with a frequency . It is either
received by a receiver (figure 4.16a) or reflected from an object (figure 4.16b). The mea-
sured frequency  at the receiver is a function of the relative speed  between transmitter
and receiver according to

 (4.15)

if the transmitter is moving and

 (4.16)

if the receiver is moving.
In the case of a reflected wave (figure 4.16b) there is a factor of 2 introduced, since any

change x in relative separation affects the round-trip path length by . Furthermore, in
such situations it is generally more convenient to consider the change in frequency ,
known as the Doppler shift, as opposed to the Doppler frequency notation above.

ft

Figure 4.16
Doppler effect between two moving objects (a) or a moving and a stationary object (b).
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 (4.17)

 (4.18)

where

 = Doppler frequency shift;

 = relative angle between direction of motion and beam axis. 

The Doppler effect applies to sound and electromagnetic waves. It has a wide spectrum
of applications:

• Sound waves: for example, industrial process control, security, fish finding, measure of
ground speed.

• Electromagnetic waves: for example, vibration measurement, radar systems, object
tracking.

A current application area is both autonomous and manned highway vehicles. Both
microwave and laser radar systems have been designed for this environment. Both systems
have equivalent range, but laser can suffer when visual signals are deteriorated by environ-
mental conditions such as rain, fog, and so on. Commercial microwave radar systems are
already available for installation on highway trucks. These systems are called VORAD
(vehicle on-board radar) and have a total range of approximately 150 m. With an accuracy
of approximately 97%, these systems report range rates from 0 to 160 km/hr with a resolu-
tion of 1 km/hr. The beam is approximately 4 degrees wide and 5 degrees in elevation. One
of the key limitations of radar technology is its bandwidth. Existing systems can provide
information on multiple targets at approximately 2 Hz.

4.1.8   Vision-based sensors
Vision is our most powerful sense. It provides us with an enormous amount of information
about the environment and enables rich, intelligent interaction in dynamic environments. It
is therefore not surprising that a great deal of effort has been devoted to providing machines
with sensors that mimic the capabilities of the human vision system. The first step in this
process is the creation of sensing devices that capture the same raw information light that
the human vision system uses. The next section describes the two current technologies for
creating vision sensors: CCD and CMOS. These sensors have specific limitations in per-
formance when compared to the human eye, and it is important that the reader understand
these limitations. Afterward, the second and third sections describe vision-based sensors
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that are commercially available, like the sensors discussed previously in this chapter, along
with their disadvantages and most popular applications.

4.1.8.1   CCD and CMOS sensors

CCD technology. The charged coupled device is the most popular basic ingredient of
robotic vision systems today. The CCD chip (see figure 4.17) is an array of light-sensitive
picture elements, or pixels, usually with between 20,000 and several million pixels total.
Each pixel can be thought of as a light-sensitive, discharging capacitor that is 5 to 25 µm
in size. First, the capacitors of all pixels are charged fully, then the integration period
begins. As photons of light strike each pixel, they liberate electrons, which are captured by
electric fields and retained at the pixel. Over time, each pixel accumulates a varying level
of charge based on the total number of photons that have struck it. After the integration
period is complete, the relative charges of all pixels need to be frozen and read. In a CCD,
the reading process is performed at one corner of the CCD chip. The bottom row of pixel
charges is transported to this corner and read, then the rows above shift down and the pro-
cess is repeated. This means that each charge must be transported across the chip, and it is
critical that the value be preserved. This requires specialized control circuitry and custom
fabrication techniques to ensure the stability of transported charges.

The photodiodes used in CCD chips (and CMOS chips as well) are not equally sensitive
to all frequencies of light. They are sensitive to light between 400 and 1000 nm wavelength.
It is important to remember that photodiodes are less sensitive to the ultraviolet end of the
spectrum (e.g., blue) and are overly sensitive to the infrared portion (e.g., heat).

Figure 4.17
Commercially available CCD chips and CCD cameras. Because this technology is relatively mature,
cameras are available in widely varying forms and costs (http://www.howstuffworks.com/digital-
camera2.htm).
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You can see that the basic light-measuring process is colorless: it is just measuring the
total number of photons that strike each pixel in the integration period. There are two
common approaches for creating color images. If the pixels on the CCD chip are grouped
into 2 x 2 sets of four, then red, green, and blue dyes can be applied to a color filter so that
each individual pixel receives only light of one color. Normally, two pixels measure green
while one pixel each measures red and blue light intensity. Of course, this one-chip color
CCD has a geometric resolution disadvantage. The number of pixels in the system has been
effectively cut by a factor of four, and therefore the image resolution output by the CCD
camera will be sacrificed.

The three-chip color camera avoids these problems by splitting the incoming light into
three complete (lower intensity) copies. Three separate CCD chips receive the light, with
one red, green, or blue filter over each entire chip. Thus, in parallel, each chip measures
light intensity for one color, and the camera must combine the CCD chips’ outputs to create
a joint color image. Resolution is preserved in this solution, although the three-chip color
cameras are, as one would expect, significantly more expensive and therefore more rarely
used in mobile robotics.

Both three-chip and single-chip color CCD cameras suffer from the fact that photo-
diodes are much more sensitive to the near-infrared end of the spectrum. This means that
the overall system detects blue light much more poorly than red and green. To compensate,
the gain must be increased on the blue channel, and this introduces greater absolute noise
on blue than on red and green. It is not uncommon to assume at least one to two bits of addi-
tional noise on the blue channel. Although there is no satisfactory solution to this problem
today, over time the processes for blue detection have been improved and we expect this
positive trend to continue.

The CCD camera has several camera parameters that affect its behavior. In some cam-
eras, these values are fixed. In others, the values are constantly changing based on built-in
feedback loops. In higher-end cameras, the user can modify the values of these parameters
via software. The iris position and shutter speed regulate the amount of light being mea-
sured by the camera. The iris is simply a mechanical aperture that constricts incoming light,
just as in standard 35 mm cameras. Shutter speed regulates the integration period of the
chip. In higher-end cameras, the effective shutter speed can be as brief at 1/30,000 seconds
and as long as 2 seconds. Camera gain controls the overall amplification of the analog sig-
nal, prior to A/D conversion. However, it is very important to understand that, even though
the image may appear brighter after setting high gain, the shutter speed and iris may not
have changed at all. Thus gain merely amplifies the signal, and amplifies along with the
signal all of the associated noise and error. Although useful in applications where imaging
is done for human consumption (e.g., photography, television), gain is of little value to a
mobile roboticist.
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In color cameras, an additional control exists for white balance. Depending on the
source of illumination in a scene (e.g., fluorescent lamps, incandescent lamps, sunlight,
underwater filtered light, etc.), the relative measurements of red, green, and blue light that
define pure white light will change dramatically. The human eye compensates for all such
effects in ways that are not fully understood, but, the camera can demonstrate glaring incon-
sistencies in which the same table looks blue in one image, taken during the night, and
yellow in another image, taken during the day. White balance controls enable the user to
change the relative gains for red, green, and blue in order to maintain more consistent color
definitions in varying contexts.

The key disadvantages of CCD cameras are primarily in the areas of inconstancy and
dynamic range. As mentioned above, a number of parameters can change the brightness
and colors with which a camera creates its image. Manipulating these parameters in a way
to provide consistency over time and over environments, for example, ensuring that a green
shirt always looks green, and something dark gray is always dark gray, remains an open
problem in the vision community. For more details on the fields of color constancy and
luminosity constancy, consult [40].

The second class of disadvantages relates to the behavior of a CCD chip in environments
with extreme illumination. In cases of very low illumination, each pixel will receive only a
small number of photons. The longest possible integration period (i.e., shutter speed) and
camera optics (i.e., pixel size, chip size, lens focal length and diameter) will determine the
minimum level of light for which the signal is stronger than random error noise. In cases of
very high illumination, a pixel fills its well with free electrons and, as the well reaches its
limit, the probability of trapping additional electrons falls and therefore the linearity
between incoming light and electrons in the well degrades. This is termed saturation and
can indicate the existence of a further problem related to cross-sensitivity. When a well has
reached its limit, then additional light within the remainder of the integration period may
cause further charge to leak into neighboring pixels, causing them to report incorrect values
or even reach secondary saturation. This effect, called blooming, means that individual
pixel values are not truly independent.

The camera parameters may be adjusted for an environment with a particular light level,
but the problem remains that the dynamic range of a camera is limited by the well capacity
of the individual pixels. For example, a high-quality CCD may have pixels that can hold
40,000 electrons. The noise level for reading the well may be 11 electrons, and therefore
the dynamic range will be 40,000:11, or 3600:1, which is 35 dB.

CMOS technology. The complementary metal oxide semiconductor chip is a significant
departure from the CCD. It too has an array of pixels, but located alongside each pixel are
several transistors specific to that pixel. Just as in CCD chips, all of the pixels accumulate
charge during the integration period. During the data collection step, the CMOS takes a new
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approach: the pixel-specific circuitry next to every pixel measures and amplifies the pixel’s
signal, all in parallel for every pixel in the array. Using more traditional traces from general
semiconductor chips, the resulting pixel values are all carried to their destinations.

CMOS has a number of advantages over CCD technologies. First and foremost, there is
no need for the specialized clock drivers and circuitry required in the CCD to transfer each
pixel’s charge down all of the array columns and across all of its rows. This also means that
specialized semiconductor manufacturing processes are not required to create CMOS
chips. Therefore, the same production lines that create microchips can create inexpensive
CMOS chips as well (see figure 4.18). The CMOS chip is so much simpler that it consumes
significantly less power; incredibly, it operates with a power consumption that is one-hun-
dredth the power consumption of a CCD chip. In a mobile robot, power is a scarce resource
and therefore this is an important advantage.

On the other hand, the CMOS chip also faces several disadvantages. Most importantly,
the circuitry next to each pixel consumes valuable real estate on the face of the light-detect-
ing array. Many photons hit the transistors rather than the photodiode, making the CMOS
chip significantly less sensitive than an equivalent CCD chip. Second, the CMOS technol-
ogy is younger and, as a result, the best resolution that one can purchase in CMOS format
continues to be far inferior to the best CCD chips available. Time will doubtless bring the
high-end CMOS imagers closer to CCD imaging performance.

Given this summary of the mechanism behind CCD and CMOS chips, one can appreci-
ate the sensitivity of any vision-based robot sensor to its environment. As compared to the
human eye, these chips all have far poorer adaptation, cross-sensitivity, and dynamic range.
As a result, vision sensors today continue to be fragile. Only over time, as the underlying
performance of imaging chips improves, will significantly more robust vision-based sen-
sors for mobile robots be available.

Figure 4.18
A commercially available, low-cost CMOS camera with lens attached.
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Camera output considerations. Although digital cameras have inherently digital output,
throughout the 1980s and early 1990s, most affordable vision modules provided analog
output signals, such as NTSC (National Television Standards Committee) and PAL (Phase
Alternating Line). These camera systems included a D/A converter which, ironically,
would be counteracted on the computer using a framegrabber, effectively an A/D converter
board situated, for example, on a computer’s bus. The D/A and A/D steps are far from
noisefree, and furthermore the color depth of the analog signal in such cameras was opti-
mized for human vision, not computer vision.

More recently, both CCD and CMOS technology vision systems provide digital signals
that can be directly utilized by the roboticist. At the most basic level, an imaging chip pro-
vides parallel digital I/O (input/output) pins that communicate discrete pixel level values.
Some vision modules make use of these direct digital signals, which must be handled sub-
ject to hard-time constraints governed by the imaging chip. To relieve the real-time
demands, researchers often place an image buffer chip between the imager’s digital output
and the computer’s digital inputs. Such chips, commonly used in webcams, capture a com-
plete image snapshot and enable non real time access to the pixels, usually in a single,
ordered pass.

At the highest level, a roboticist may choose instead to utilize a higher-level digital
transport protocol to communicate with an imager. Most common are the IEEE 1394
(Firewire) standard and the USB (and USB 2.0) standards, although some older imaging
modules also support serial (RS-232). To use any such high-level protocol, one must locate
or create driver code both for that communication layer and for the particular implementa-
tion details of the imaging chip. Take note, however, of the distinction between lossless
digital video and the standard digital video stream designed for human visual consumption.
Most digital video cameras provide digital output, but often only in compressed form. For
vision researchers, such compression must be avoided as it not only discards information
but even introduces image detail that does not actually exist, such as MPEG (Moving Pic-
ture Experts Group) discretization boundaries.

4.1.8.2   Visual ranging sensors
Range sensing is extremely important in mobile robotics as it is a basic input for successful
obstacle avoidance. As we have seen earlier in this chapter, a number of sensors are popular
in robotics explicitly for their ability to recover depth estimates: ultrasonic, laser
rangefinder, optical rangefinder, and so on. It is natural to attempt to implement ranging
functionality using vision chips as well.

However, a fundamental problem with visual images makes rangefinding relatively dif-
ficult. Any vision chip collapses the 3D world into a 2D image plane, thereby losing depth
information. If one can make strong assumptions regarding the size of objects in the world,
or their particular color and reflectance, then one can directly interpret the appearance of
the 2D image to recover depth. But such assumptions are rarely possible in real-world
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mobile robot applications. Without such assumptions, a single picture does not provide
enough information to recover spatial information. 

The general solution is to recover depth by looking at several images of the scene to gain
more information, hopefully enough to at least partially recover depth. The images used
must be different, so that taken together they provide additional information. They could
differ in viewpoint, yielding stereo or motion algorithms. An alternative is to create differ-
ent images, not by changing the viewpoint, but by changing the camera geometry, such as
the focus position or lens iris. This is the fundamental idea behind depth from focus and
depth from defocus techniques.

In the next section, we outline the general approach to the depth from focus techniques
because it presents a straightforward and efficient way to create a vision-based range sen-
sor. Subsequently, we present details for the correspondence-based techniques of depth
from stereo and motion.

Depth from focus. The depth from focus class of techniques relies on the fact that image
properties not only change as a function of the scene but also as a function of the camera
parameters. The relationship between camera parameters and image properties is depicted
in figure 4.19.

The basic formula governing image formation relates the distance of the object from the
lens,  in the above figure, to the distance  from the lens to the focal point, based on the
focal length  of the lens:

Figure 4.19
Depiction of the camera optics and its impact on the image. In order to get a sharp image, the image
plane must coincide with the focal plane. Otherwise the image of the point (x,y,z) will be blurred in
the image, as can be seen in the drawing above.
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 (4.19)

If the image plane is located at distance  from the lens, then for the specific object
voxel depicted, all light will be focused at a single point on the image plane and the object
voxel will be focused. However, when the image plane is not at , as is depicted in figure
4.19, then the light from the object voxel will be cast on the image plane as a blur circle.
To a first approximation, the light is homogeneously distributed throughout this blur circle,
and the radius  of the circle can be characterized according to the equation

 (4.20)

 is the diameter of the lens or aperture and  is the displacement of the image plan
from the focal point.

Given these formulas, several basic optical effects are clear. For example, if the aperture
or lens is reduced to a point, as in a pinhole camera, then the radius of the blur circle
approaches zero. This is consistent with the fact that decreasing the iris aperture opening
causes the depth of field to increase until all objects are in focus. Of course, the disadvan-
tage of doing so is that we are allowing less light to form the image on the image plane and
so this is practical only in bright circumstances.

The second property that can be deduced from these optics equations relates to the sen-
sitivity of blurring as a function of the distance from the lens to the object. Suppose the
image plane is at a fixed distance 1.2 from a lens with diameter  and focal length

. We can see from equation (4.20) that the size of the blur circle  changes pro-
portionally with the image plane displacement . If the object is at distance , then
from equation (4.19) we can compute  and therefore  = 0.2. Increase the object dis-
tance to  and as a result  = 0.533. Using equation (4.20) in each case we can com-
pute  and  respectively. This demonstrates high sensitivity for
defocusing when the object is close to the lens.

In contrast, suppose the object is at . In this case we compute . But if
the object is again moved one unit, to , then we compute . The resulting
blur circles are  and , far less than the quadrupling in  when the
obstacle is one-tenth the distance from the lens. This analysis demonstrates the fundamental
limitation of depth from focus techniques: they lose sensitivity as objects move farther
away (given a fixed focal length). Interestingly, this limitation will turn out to apply to vir-
tually all visual ranging techniques, including depth from stereo and depth from motion.

Nevertheless, camera optics can be customized for the depth range of the intended appli-
cation. For example, a zoom lens with a very large focal length  will enable range resolu-
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tion at significant distances, of course at the expense of field of view. Similarly, a large lens
diameter, coupled with a very fast shutter speed, will lead to larger, more detectable blur
circles.

Given the physical effects summarized by the above equations, one can imagine a visual
ranging sensor that makes use of multiple images in which camera optics are varied (e.g.,
image plane displacement ) and the same scene is captured (see figure 4.20). In fact, this
approach is not a new invention. The human visual system uses an abundance of cues and
techniques, and one system demonstrated in humans is depth from focus. Humans vary the
focal length of their lens continuously at a rate of about 2 Hz. Such approaches, in which
the lens optics are actively searched in order to maximize focus, are technically called depth
from focus. In contrast, depth from defocus means that depth is recovered using a series of
images that have been taken with different camera geometries.

The depth from focus method is one of the simplest visual ranging techniques. To deter-
mine the range to an object, the sensor simply moves the image plane (via focusing) until
maximizing the sharpness of the object. When the sharpness is maximized, the correspond-
ing position of the image plane directly reports range. Some autofocus cameras and virtu-
ally all autofocus video cameras use this technique. Of course, a method is required for
measuring the sharpness of an image or an object within the image. The most common tech-
niques are approximate measurements of the subimage intensity ( ) gradient:

 (4.21)

 (4.22)

δ

Figure 4.20
Two images of the same scene taken with a camera at two different focusing positions. Note the sig-
nificant change in texture sharpness between the near surface and far surface. The scene is an outdoor
concrete step.
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A significant advantage of the horizontal sum of differences technique [equation (4.21)]
is that the calculation can be implemented in analog circuitry using just a rectifier, a low-
pass filter, and a high-pass filter. This is a common approach in commercial cameras and
video recorders. Such systems will be sensitive to contrast along one particular axis,
although in practical terms this is rarely an issue.

However depth from focus is an active search method and will be slow because it takes
time to change the focusing parameters of the camera, using, for example, a servo-con-
trolled focusing ring. For this reason this method has not been applied to mobile robots.

A variation of the depth from focus technique has been applied to a mobile robot, dem-
onstrating obstacle avoidance in a variety of environments, as well as avoidance of concave
obstacles such as steps and ledges [117]. This robot uses three monochrome cameras placed
as close together as possible with different, fixed lens focus positions (figure 4.21).

Several times each second, all three frame-synchronized cameras simultaneously cap-
ture three images of the same scene. The images are each divided into five columns and
three rows, or fifteen subregions. The approximate sharpness of each region is computed
using a variation of equation (4.22), leading to a total of forty-five sharpness values. Note
that equation (4.22) calculates sharpness along diagonals but skips one row. This is due to
a subtle but important issue. Many cameras produce images in interlaced mode. This means

Figure 4.21
The Cheshm robot uses three monochrome cameras as its only ranging sensor for obstacle avoidance
in the context of humans, static obstacles such as bushes, and convex obstacles such as ledges and
steps.
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that the odd rows are captured first, then afterward the even rows are captured. When such
a camera is used in dynamic environments, for example, on a moving robot, then adjacent
rows show the dynamic scene at two different time points, differing by up to one-thirtieth
of a second. The result is an artificial blurring due to motion and not optical defocus. By
comparing only even-numbered rows we avoid this interlacing side effect. 

Recall that the three images are each taken with a camera using a different focus posi-
tion. Based on the focusing position, we call each image close, medium or far. A 5 x 3
coarse depth map of the scene is constructed quickly by simply comparing the sharpness
values of each of the three corresponding regions. Thus, the depth map assigns only two
bits of depth information to each region using the values close, medium, and far. The crit-
ical step is to adjust the focus positions of all three cameras so that flat ground in front of
the obstacle results in medium readings in one row of the depth map. Then, unexpected
readings of either close or far will indicate convex and concave obstacles respectively,
enabling basic obstacle avoidance in the vicinity of objects on the ground as well as drop-
offs into the ground.

Although sufficient for obstacle avoidance, the above depth from focus algorithm pre-
sents unsatisfyingly coarse range information. The alternative is depth from defocus, the
most desirable of the focus-based vision techniques.

Depth from defocus methods take as input two or more images of the same scene, taken
with different, known camera geometry. Given the images and the camera geometry set-
tings, the goal is to recover the depth information of the 3D scene represented by the
images. We begin by deriving the relationship between the actual scene properties (irradi-
ance and depth), camera geometry settings, and the image g that is formed at the image
plane.

The focused image  of a scene is defined as follows. Consider a pinhole aperture
( ) in lieu of the lens. For every point  at position  on the image plane, draw
a line through the pinhole aperture to the corresponding, visible point P in the actual scene.
We define  as the irradiance (or light intensity) at  due to the light from . Intu-
itively,  represents the intensity image of the scene perfectly in focus.

The point spread function  is defined as the amount of irradiance
from point  in the scene (corresponding to  in the focused image  that contributes
to point  in the observed, defocused image . Note that the point spread function
depends not only upon the source, , and the target, , but also on , the blur
circle radius. , in turn, depends upon the distance from point  to the lens, as can be seen
by studying equations (4.19) and (4.20).

Given the assumption that the blur circle is homogeneous in intensity, we can define 
as follows:
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 (4.23)

Intuitively, point  contributes to the image pixel  only when the blur circle of
point  contains the point . Now we can write the general formula that computes
the value of each pixel in the image, , as a function of the point spread function and
the focused image:

 (4.24)

This equation relates the depth of scene points via  to the observed image . Solving
for  would provide us with the depth map. However, this function has another unknown,
and that is , the focused image. Therefore, one image alone is insufficient to solve the
depth recovery problem, assuming we do not know how the fully focused image would
look.

Given two images of the same scene, taken with varying camera geometry, in theory it
will be possible to solve for  as well as  because  stays constant. There are a number
of algorithms for implementing such a solution accurately and quickly. The classic
approach is known as inverse filtering because it attempts to directly solve for , then
extract depth information from this solution. One special case of the inverse filtering solu-
tion has been demonstrated with a real sensor. Suppose that the incoming light is split and
sent to two cameras, one with a large aperture and the other with a pinhole aperture [121].
The pinhole aperture results in a fully focused image, directly providing the value of .
With this approach, there remains a single equation with a single unknown, and so the solu-
tion is straightforward. Pentland [121] has demonstrated such a sensor, with several meters
of range and better than 97% accuracy. Note, however, that the pinhole aperture necessi-
tates a large amount of incoming light, and that furthermore the actual image intensities
must be normalized so that the pinhole and large-diameter images have equivalent total
radiosity. More recent depth from defocus methods use statistical techniques and charac-
terization of the problem as a set of linear equations [64]. These matrix-based methods have
recently achieved significant improvements in accuracy over all previous work.

In summary, the basic advantage of the depth from defocus method is its extremely fast
speed. The equations above do not require search algorithms to find the solution, as would
the correlation problem faced by depth from stereo methods. Perhaps more importantly, the
depth from defocus methods also need not capture the scene at different perspectives, and
are therefore unaffected by occlusions and the disappearance of objects in a second view.

h xg yg xf yf Rx y,, , , ,( )
1

πR2
--------- if xg xf–( )2 yg yf–( )2+( ) R2≤

0 if xg xf–( )2 yg yf–( )2+( ) R2>

=

P xg yg,( )
P xg yg,( )

f x y,( )

g xg yg,( ) h xg yg x y Rx y,, , , ,( )f x y,( )
x y,
∑=

R g
R

f

g R f

R

f



Perception 129

As with all visual methods for ranging, accuracy decreases with distance. Indeed, the
accuracy can be extreme; these methods have been used in microscopy to demonstrate
ranging at the micrometer level.

Stereo vision. Stereo vision is one of several techniques in which we recover depth infor-
mation from two images that depict the scene from different perspectives. The theory of
depth from stereo has been well understood for years, while the engineering challenge of
creating a practical stereo sensor has been formidable [16, 29, 30]. Recent times have seen
the first successes on this front, and so after presenting a basic formalism of stereo ranging,
we describe the state-of-the-art algorithmic approach and one of the recent, commercially
available stereo sensors.

First, we consider a simplified case in which two cameras are placed with their optical
axes parallel, at a separation (called the baseline) of b, shown in figure 4.22. 

In this figure, a point on the object is described as being at coordinate  with
respect to a central origin located between the two camera lenses. The position of this

Figure 4.22
Idealized camera geometry for stereo vision.
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point’s light rays on each camera’s image is depicted in camera-specific local coordinates.
Thus, the origin for the coordinate frame referenced by points of the form ( ) is located
at the center of lens .

From the figure 4.22, it can be seen that

 and  (4.25)

and (out of the plane of the page)

 (4.26)

where is the distance of both lenses to the image plane. Note from equation (4.25) that

 (4.27)

where the difference in the image coordinates,  is called the disparity. This is an
important term in stereo vision, because it is only by measuring disparity that we can
recover depth information. Using the disparity and solving all three above equations pro-
vides formulas for the three dimensions of the scene point being imaged:

 ;    ;    (4.28)

Observations from these equations are as follows:

• Distance is inversely proportional to disparity. The distance to near objects can therefore
be measured more accurately than that to distant objects, just as with depth from focus
techniques. In general, this is acceptable for mobile robotics, because for navigation and
obstacle avoidance closer objects are of greater importance.

• Disparity is proportional to . For a given disparity error, the accuracy of the depth esti-
mate increases with increasing baseline .

• As b is increased, because the physical separation between the cameras is increased,
some objects may appear in one camera but not in the other. Such objects by definition
will not have a disparity and therefore will not be ranged successfully.
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• A point in the scene visible to both cameras produces a pair of image points (one via
each lens) known as a conjugate pair. Given one member of the conjugate pair, we know
that the other member of the pair lies somewhere along a line known as an epipolar line.
In the case depicted by figure 4.22, because the cameras are perfectly aligned with one
another, the epipolar lines are horizontal lines (i.e., along the  direction). 

However, the assumption of perfectly aligned cameras is normally violated in practice.
In order to optimize the range of distances that can be recovered, it is often useful to turn
the cameras inward toward one another, for example. Figure 4.22 shows the orientation
vectors that are necessary to solve this more general problem. We will express the position
of a scene point  in terms of the reference frame of each camera separately. The reference
frames of the cameras need not be aligned, and can indeed be at any arbitrary orientation
relative to one another. 

For example the position of point  will be described in terms of the left camera frame
as . Note that these are the coordinates of point , not the position of its
counterpart in the left camera image.  can also be described in terms of the right camera
frame as . If we have a rotation matrix  and translation matrix  relat-
ing the relative positions of cameras l and r, then we can define  in terms of :

 (4.29)

where  is a 3 x 3 rotation matrix and  is an offset translation matrix between the two
cameras.

Expanding equation (4.29) yields

 (4.30)

The above equations have two uses:

1. We could find  if we knew R,  and . Of course, if we knew  then we would
have complete information regarding the position of  relative to the left camera, and
so the depth recovery problem would be solved. Note that, for perfectly aligned cameras
as in figure 4.22,  (the identify matrix).

2. We could calibrate the system and find r11, r12 … given a set of conjugate pairs
.
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In order to carry out the calibration step of step 2 above, we must find values for twelve
unknowns, requiring twelve equations. This means that calibration requires, for a given
scene, four conjugate points. 

The above example supposes that regular translation and rotation are all that are required
to effect sufficient calibration for stereo depth recovery using two cameras. In fact, single-
camera calibration is itself an active area of research, particularly when the goal includes
any 3D recovery aspect. When researchers intend to use even a single camera with high pre-
cision in 3D, internal errors relating to the exact placement of the imaging chip relative to
the lens optical axis, as well as aberrations in the lens system itself, must be calibrated
against. Such single-camera calibration involves finding solutions for the values for the
exact offset of the imaging chip relative to the optical axis, both in translation and angle,
and finding the relationship between distance along the imaging chip surface and external
viewed surfaces. Furthermore, even without optical aberration in play, the lens is an inher-
ently radial instrument, and so the image projected upon a flat imaging surface is radially
distorted (i.e., parallel lines in the viewed world converge on the imaging chip). 

A commonly practiced technique for such single-camera calibration is based upon
acquiring multiple views of an easily analyzed planar pattern, such as a grid of black
squares on a white background. The corners of such squares can easily be extracted, and
using an interactive refinement algorithm the intrinsic calibration parameters of a camera
can be extracted. Because modern imaging systems are capable of spatial accuracy greatly
exceeding the pixel size, the payoff of such refined calibration can be significant. For fur-
ther discussion of calibration and to download and use a standard calibration program, see
[158].

Assuming that the calibration step is complete, we can now formalize the range recovery
problem. To begin with, we do not have the position of P available, and therefore

 and  are unknowns. Instead, by virtue of the two cameras we have
pixels on the image planes of each camera,  and . Given the focal
length  of the cameras we can relate the position of  to the left camera image as follows:

 and  (4.31)

Let us concentrate first on recovery of the values  and . From equations (4.30) and
(4.31) we can compute these values from any two of the following equations:

 (4.32)
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 (4.33)

 (4.34)

The same process can be used to identify values for  and , yielding complete infor-
mation about the position of point . However, using the above equations requires us to
have identified conjugate pairs in the left and right camera images: image points that orig-
inate at the same object point  in the scene. This fundamental challenge, identifying the
conjugate pairs and thereby recovering disparity, is the correspondence problem. Intu-
itively, the problem is, given two images of the same scene from different perspectives,
how can we identify the same object points in both images? For every such identified object
point, we will be able to recover its 3D position in the scene.

The correspondence problem, or the problem of matching the same object in two differ-
ent inputs, has been one of the most challenging problems in the computer vision field and
the artificial intelligence fields. The basic approach in nearly all proposed solutions
involves converting each image in order to create more stable and more information-rich
data. With more reliable data in hand, stereo algorithms search for the best conjugate pairs
representing as many of the images’ pixels as possible.

The search process is well understood, but the quality of the resulting depth maps
depends heavily upon the way in which images are treated to reduce noise and improve sta-
bility. This has been the chief technology driver in stereo vision algorithms, and one par-
ticular method has become widely used in commercially available systems.

The zero crossings of Laplacian of Gaussian (ZLoG). ZLoG is a strategy for identify-
ing features in the left and right camera images that are stable and will match well, yielding
high-quality stereo depth recovery. This approach has seen tremendous success in the field
of stereo vision, having been implemented commercially in both software and hardware
with good results. It has led to several commercial stereo vision systems and yet it is
extremely simple. Here we summarize the approach and explain some of its advantages.

The core of ZLoG is the Laplacian transformation of an image. Intuitively, this is noth-
ing more than the second derivative. Formally, the Laplacian  of an image with
intensities  is defined as

 (4.35)
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So the Laplacian represents the second derivative of the image, and is computed along
both axes. Such a transformation, called a convolution, must be computed over the discrete
space of image pixel values, and therefore an approximation of equation (4.35) is required
for application:

 (4.36)

We depict a discrete operator , called a kernel, that approximates the second derivative
operation along both axes as a 3 x 3 table:

 (4.37)

Application of the kernel  to convolve an image is straightforward. The kernel defines
the contribution of each pixel in the image to the corresponding pixel in the target as well
as its neighbors. For example, if a pixel (5,5) in the image has value , then
application of the kernel depicted by equation (4.37) causes pixel  to make the fol-
lowing contributions to the target image :

 += -40;

 += 10;

 += 10;

 += 10;

 += 10.

Now consider the graphic example of a step function, representing a pixel row in which
the intensities are dark, then suddenly there is a jump to very bright intensities. The second
derivative will have a sharp positive peak followed by a sharp negative peak, as depicted
in figure 4.23. The Laplacian is used because of this extreme sensitivity to changes in the
image. But the second derivative is in fact oversensitive. We would like the Laplacian to
trigger large peaks due to real changes in the scene’s intensities, but we would like to keep
signal noise from triggering false peaks. 

For the purpose of removing noise due to sensor error, the ZLoG algorithm applies
Gaussian smoothing first, then executes the Laplacian convolution. Such smoothing can be
effected via convolution with a  table that approximates Gaussian smoothing:
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 (4.38)

Gaussian smoothing does not really remove error; it merely distributes image variations
over larger areas. This should seem familiar. In fact, Gaussian smoothing is almost identical
to the blurring caused by defocused optics. It is, nonetheless, very effective at removing
high-frequency noise, just as blurring removes fine-grained detail. Note that, like defocus-
ing, this kernel does not change the total illumination but merely redistributes it (by virtue
of the divisor 16).

The result of Laplacian of Gaussian (LoG) image filtering is a target array with sharp
positive and negative spikes identifying boundaries of change in the original image. For
example, a sharp edge in the image will result in both a positive spike and a negative spike,
located on either side of the edge.

To solve the correspondence problem, we would like to identify specific features in LoG
that are amenable to matching between the left camera and right camera filtered images. A
very effective feature has been to identify each zero crossing of the LoG as such a feature.

Figure 4.23
Step function example of second derivative shape and the impact of noise. 

1
16
------ 2

16
------ 1

16
------

2
16
------ 4

16
------ 2

16
------

1
16
------ 2

16
------ 1

16
------



136 Chapter 4

Many zero crossings do lie at edges in images, but their occurrence is somewhat broader
than that. An interesting characteristic of zero crossings is that they are very sharply
defined, covering just one “pixel” width in the filtered image. The accuracy can even be
further enhanced by using interpolation to establish the position of the zero crossing with
subpixel accuracy. All told, the accuracy of the zero crossing features in ZLoG have made
them the preferred features in state-of-the-art stereo depth recovery algorithms.

Figure 4.24 shows on an example the various steps required to extract depth information
from a stereo image.

Several commercial stereo vision depth recovery sensors have been available for
researchers over the past 10 years. A popular unit in mobile robotics today is the digital
stereo head (or SVM) from Videre Design shown in figure 4.25.

The SVM uses the LoG operator, following it by tessellating the resulting array into sub-
regions within which the sum of absolute values is computed. The correspondence problem
is solved at the level of these subregions, a process called area correlation, and after cor-
respondence is solved the results are interpolated to one-fourth pixel precision. An impor-
tant feature of the SVM is that it produces not just a depth map but distinct measures of

Figure 4.25
The SVM module mounted on EPFL’s Shrimp robot.
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Figure 4.24
Extracting depth information from a stereo image. (a1 and a2) Left and right image. (b1 and b2) Ver-
tical edge filtered left and right image: filter = [1 2 4 -2 -10 -2 4 2 1]. (c) Confidence image:
bright = high confidence (good texture); dark = low confidence (no texture). (d) Depth image (dispar-
ity): bright = close; dark = far.

a1 a2

b1 b2

c d
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match quality for each pixel. This is valuable because such additional information can be
used over time to eliminate spurious, incorrect stereo matches that have poor match quality.

The performance of SVM provides a good representative of the state of the art in stereo
ranging today. The SVM consists of sensor hardware, including two CMOS cameras and
DSP (Digital Signal Processor) hardware. In addition, the SVM includes stereo vision soft-
ware that makes use of a standard computer (e.g., a Pentium processor). On a 320 x 240
pixel image pair, the SVM assigns one of thirty-two discrete levels of disparity (i.e., depth)
to every pixel at a rate of twelve frames per second (based on the speed of a 233 MHz Pen-
tium II). This compares favorably to both laser rangefinding and ultrasonics, particularly
when one appreciates that ranging information with stereo is being computed for not just
one target point, but all target points in the image.

It is important to note that the SVM uses CMOS chips rather than CCD chips, demon-
strating that resolution sufficient for stereo vision algorithms is readily available using the
less expensive, power efficient CMOS technology.

The resolution of a vision-based ranging system will depend upon the range to the
object, as we have stated before. It is instructive to observe the published resolution values
for the SVM sensor. Although highly dependent on the camera optics, using a standard
6 mm focal length lens pair, the SVM claims a resolution of 10 mm at 3 m range, and a res-
olution of 60 mm at 10 m range. These values are based on ideal circumstances, but never-
theless exemplify the rapid loss in resolution that will accompany vision-based ranging.

4.1.8.3   Motion and optical flow
A great deal of information can be recovered by recording time-varying images from a
fixed (or moving) camera. First, we distinguish between the motion field and optical flow:

• Motion field: this assigns a velocity vector to every point in an image. If a point in the
environment moves with velocity , then this induces a velocity  in the image plane.
It is possible to determine mathematically the relationship between  and .

• Optical flow: it can also be true that brightness patterns in the image move as the object
that causes them moves (light source). Optical flow is the apparent motion of these
brightness patterns.

In our analysis here we assume that the optical flow pattern will correspond to the
motion field, although this is not always true in practice. This is illustrated in figure 4.26a
where a sphere exhibits spatial variation of brightness, or shading, in the image of the
sphere since its surface is curved. If the surface moves, however, this shading pattern will
not move hence the optical flow is zero everywhere even though the motion field is not
zero. In figure 4.26b, the opposite occurs. Here we have a fixed sphere with a moving light
source. The shading in the image will change as the source moves. In this case the optical

v0 vi

vi v0
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flow is nonzero but the motion field is zero. If the only information accessible to us is the
optical flow and we depend on this, we will obtain incorrect results in both cases.

Optical Flow. There are a number of techniques for attempting to measure optical flow
and thereby obtain the scene’s motion field. Most algorithms use local information,
attempting to find the motion of a local patch in two consecutive images. In some cases,
global information regarding smoothness and consistency can help to further disambiguate
such matching processes. Below we present details for the optical flow constraint equation
method. For more details on this and other methods refer to [41, 77, 146].

Suppose first that the time interval between successive snapshots is so fast that we can
assume that the measured intensity of a portion of the same object is effectively constant.
Mathematically, let  be the image irradiance at time t at the image point . If

 and  are the  and  components of the optical flow vector at that point,
we need to search a new image for a point where the irradiance will be the same at time

, that is, at point , where  and . That is,

 (4.39)

for a small time interval, . This will capture the motion of a constant-intensity patch
through time. If we further assume that the brightness of the image varies smoothly, then
we can expand the left hand side of equation (4.39) as a Taylor series to obtain

 (4.40)

where e contains second- and higher-order terms in , and so on. In the limit as  tends
to zero we obtain

Figure 4.26
Motion of the sphere or the light source here demonstrates that optical flow is not always the same as
the motion field.
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 (4.41)

from which we can abbreviate

 ;    (4.42)

and

 ;   ;    (4.43)

so that we obtain

 (4.44)

The derivative  represents how quickly the intensity changes with time while the
derivatives  and  represent the spatial rates of intensity change (how quickly intensity
changes across the image). Altogether, equation (4.44) is known as the optical flow con-
straint equation and the three derivatives can be estimated for each pixel given successive
images.

We need to calculate both u and v for each pixel, but the optical flow constraint equation
only provides one equation per pixel, and so this is insufficient. The ambiguity is intuitively
clear when one considers that a number of equal-intensity pixels can be inherently ambig-
uous – it may be unclear which pixel is the resulting location for an equal-intensity origi-
nating pixel in the prior image.

The solution to this ambiguity requires an additional constraint. We assume that in gen-
eral the motion of adjacent pixels will be similar, and that therefore the overall optical flow
of all pixels will be smooth. This constraint is interesting in that we know it will be violated
to some degree, but we enforce the constraint nonetheless in order to make the optical flow
computation tractable. Specifically, this constraint will be violated precisely when different
objects in the scene are moving in different directions with respect to the vision system. Of
course, such situations will tend to include edges, and so this may introduce a useful visual
cue.

Because we know that this smoothness constraint will be somewhat incorrect, we can
mathematically define the degree to which we violate this constraint by evaluating the for-
mula
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 (4.45)

which is the integral of the square of the magnitude of the gradient of the optical flow. We
also determine the error in the optical flow constraint equation (which in practice will not
quite be zero).

 (4.46)

Both of these equations should be as small as possible so we want to minimize ,
where  is a parameter that weights the error in the image motion equation relative to the
departure from smoothness. A large parameter should be used if the brightness measure-
ments are accurate and small if they are noisy. In practice the parameter  is adjusted man-
ually and interactively to achieve the best performance.

The resulting problem then amounts to the calculus of variations, and the Euler equa-
tions yield

 (4.47)

 (4.48)

where

 (4.49)

which is the Laplacian operator.
Equations (4.47) and (4.48) form a pair of elliptical second-order partial differential

equations which can be solved iteratively.
Where silhouettes (one object occluding another) occur, discontinuities in the optical

flow will occur. This of course violates the smoothness constraint. One possibility is to try
and find edges that are indicative of such occlusions, excluding the pixels near such edges
from the optical flow computation so that smoothness is a more realistic assumption.
Another possibility is to opportunistically make use of these distinctive edges. In fact, cor-
ners can be especially easy to pattern-match across subsequent images and thus can serve
as fiducial markers for optical flow computation in their own right.

Optical flow promises to be an important ingredient in future vision algorithms that
combine cues across multiple algorithms. However, obstacle avoidance and navigation
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control systems for mobile robots exclusively using optical flow have not yet proved to be
broadly effective. 

4.1.8.4    Color-tracking sensors
Although depth from stereo will doubtless prove to be a popular application of vision-based
methods to mobile robotics, it mimics the functionality of existing sensors, including ultra-
sonic, laser, and optical rangefinders. An important aspect of vision-based sensing is that
the vision chip can provide sensing modalities and cues that no other mobile robot sensor
provides. One such novel sensing modality is detecting and tracking color in the environ-
ment.

Color represents an environmental characteristic that is orthogonal to range, and it rep-
resents both a natural cue and an artificial cue that can provide new information to a mobile
robot. For example, the annual robot soccer events make extensive use of color both for
environmental marking and for robot localization (see figure 4.27).

Color sensing has two important advantages. First, detection of color is a straightfor-
ward function of a single image, therefore no correspondence problem need be solved in
such algorithms. Second, because color sensing provides a new, independent environmen-
tal cue, if it is combined (i.e., sensor fusion) with existing cues, such as data from stereo
vision or laser rangefinding, we can expect significant information gains.

Efficient color-tracking sensors are now available commercially. Below, we briefly
describe two commercial, hardware-based color-tracking sensors, as well as a publicly
available software-based solution.

Figure 4.27
Color markers on the top of EPFL’s STeam Engine soccer robots enable a color-tracking sensor to
locate the robots and the ball in the soccer field.
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Cognachrome color-tracking system. The Cognachrome Vision System form Newton
Research Labs is a color-tracking hardware-based sensor capable of extremely fast color
tracking on a dedicated processor [162]. The system will detect color blobs based on three
user-defined colors at a rate of 60 Hz. The Cognachrome system can detect and report on a
maximum of twenty-five objects per frame, providing centroid, bounding box, area, aspect
ratio, and principal axis orientation information for each object independently.

This sensor uses a technique called constant thresholding to identify each color. In
 (red, green and blue) space, the user defines for each of , , and  a minimum

and maximum value. The 3D box defined by these six constraints forms a color bounding
box, and any pixel with  values that are all within this bounding box is identified as a
target. Target pixels are merged into larger objects that are then reported to the user.

The Cognachrome sensor achieves a position resolution of one pixel for the centroid of
each object in a field that is 200 x 250 pixels in size. The key advantage of this sensor, just
as with laser rangefinding and ultrasonics, is that there is no load on the mobile robot’s
main processor due to the sensing modality. All processing is performed on sensor-specific
hardware (i.e., a Motorola 68332 processor and a mated framegrabber). The Cognachrome
system costs several thousand dollars, but is being superseded by higher-performance hard-
ware vision processors at Newton Labs, Inc.

CMUcam robotic vision sensor. Recent advances in chip manufacturing, both in terms
of CMOS imaging sensors and high-speed, readily available microprocessors at the 50+
MHz range, have made it possible to manufacture low-overhead intelligent vision sensors
with functionality similar to Cognachrome for a fraction of the cost. The CMUcam sensor
is a recent system that mates a low-cost microprocessor with a consumer CMOS imaging
chip to yield an intelligent, self-contained vision sensor for $100, as shown in figure 4.29.

This sensor is designed to provide high-level information extracted from the camera
image to an external processor that may, for example, control a mobile robot. An external
processor configures the sensor’s streaming data mode, for instance, specifying tracking
mode for a bounded  or  value set. Then, the vision sensor processes the data in
real time and outputs high-level information to the external consumer. At less than 150 mA
of current draw, this sensor provides image color statistics and color-tracking services at
approximately twenty frames per second at a resolution of 80 x 143 [126].

Figure 4.29 demonstrates the color-based object tracking service as provided by
CMUcam once the sensor is trained on a human hand. The approximate shape of the object
is extracted as well as its bounding box and approximate center of mass.

CMVision color tracking software library. Because of the rapid speedup of processors
in recent times, there has been a trend toward executing basic vision processing on a main
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processor within the mobile robot. Intel Corporation’s computer vision library is an opti-
mized library for just such processing [160]. In this spirit, the CMVision color-tracking
software represents a state-of-the-art software solution for color tracking in dynamic envi-
ronments [47]. CMVision can track up to thirty-two colors at 30 Hz on a standard 200 MHz
Pentium computer.

The basic algorithm this sensor uses is constant thresholding, as with Cognachrome,
with the chief difference that the  color space is used instead of the  color space
when defining a six-constraint bounding box for each color. While , , and  values
encode the intensity of each color,  separates the color (or chrominance) measure
from the brightness (or luminosity) measure.  represents the image’s luminosity while 

Figure 4.28
The CMUcam sensor consists of three chips: a CMOS imaging chip, a SX28 microprocessor, and a
Maxim RS232 level shifter [126].

Figure 4.29
Color-based object extraction as applied to a human hand.
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and  together capture its chrominance. Thus, a bounding box expressed in  space
can achieve greater stability with respect to changes in illumination than is possible in

 space.
The CMVision color sensor achieves a resolution of 160 x 120 and returns, for each

object detected, a bounding box and a centroid. The software for CMVision is available
freely with a Gnu Public License at [161].

Key performance bottlenecks for both the CMVision software, the CMUcam hardware
system, and the Cognachrome hardware system continue to be the quality of imaging chips
and available computational speed. As significant advances are made on these frontiers one
can expect packaged vision systems to witness tremendous performance improvements.

4.2 Representing Uncertainty

In section 4.1.2 we presented a terminology for describing the performance characteristics
of a sensor. As mentioned there, sensors are imperfect devices with errors of both system-
atic and random nature. Random errors, in particular, cannot be corrected, and so they rep-
resent atomic levels of sensor uncertainty.

But when you build a mobile robot, you combine information from many sensors, even
using the same sensors repeatedly, over time, to possibly build a model of the environment.
How can we scale up, from characterizing the uncertainty of a single sensor to the uncer-
tainty of the resulting robot system?

We begin by presenting a statistical representation for the random error associated with
an individual sensor [12]. With a quantitative tool in hand, the standard Gaussian uncer-
tainty model can be presented and evaluated. Finally, we present a framework for comput-
ing the uncertainty of conclusions drawn from a set of quantifiably uncertain
measurements, known as the error propagation law.

4.2.1   Statistical representation
We have already defined error as the difference between a sensor measurement and the true
value. From a statistical point of view, we wish to characterize the error of a sensor, not for
one specific measurement but for any measurement. Let us formulate the problem of sens-
ing as an estimation problem. The sensor has taken a set of  measurements with values

. The goal is to characterize the estimate of the true value  given these measure-
ments:

 (4.50)
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From this perspective, the true value is represented by a random (and therefore
unknown) variable . We use a probability density function to characterize the statistical
properties of the value of . 

In figure 4.30, the density function identifies for each possible value  of  a probabil-
ity density  along the -axis. The area under the curve is 1, indicating the complete
chance of  having some value:

 (4.51)

The probability of the value of  falling between two limits  and  is computed as
the bounded integral:

 (4.52)

The probability density function is a useful way to characterize the possible values of 
because it not only captures the range of  but also the comparative probability of different
values for . Using  we can quantitatively define the mean, variance, and standard
deviation as follows.

The mean value  is equivalent to the expected value  if we were to measure 
an infinite number of times and average all of the resulting values. We can easily define

:
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Figure 4.30
A sample probability density function, showing a single probability peak (i.e., unimodal) with asymp-
totic drops in both directions.
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 (4.53)

Note in the above equation that calculation of  is identical to the weighted average
of all possible values of . In contrast, the mean square value is simply the weighted aver-
age of the squares of all values of :

 (4.54)

Characterization of the “width” of the possible values of  is a key statistical measure,
and this requires first defining the variance :

 (4.55)

Finally, the standard deviation  is simply the square root of variance , and  will
play important roles in our characterization of the error of a single sensor as well as the error
of a model generated by combining multiple sensor readings.

4.2.1.1   Independence of random variables.
With the tools presented above, we often evaluate systems with multiple random variables.
For instance, a mobile robot’s laser rangefinder may be used to measure the position of a
feature on the robot’s right and, later, another feature on the robot’s left. The position of
each feature in the real world may be treated as random variables,  and . 

Two random variables  and  are independent if the particular value of one has no
bearing on the particular value of the other. In this case we can draw several important con-
clusions about the statistical behavior of  and . First, the expected value (or mean
value) of the product of random variables is equal to the product of their mean values:

 (4.56)

Second, the variance of their sums is equal to the sum of their variances:

 (4.57)

In mobile robotics, we often assume the independence of random variables even when
this assumption is not strictly true. The simplification that results makes a number of the
existing mobile robot-mapping and navigation algorithms tenable, as described in

µ E X[ ] xf x( ) xd
∞–

∞

∫= =

E X[ ]
x

x

E X2[ ] x2f x( ) xd
∞–

∞

∫=

X
σ2

Var X( ) σ2 x µ–( )2f x( ) xd
∞–

∞

∫= =

σ σ σ2

X1 X2

X1 X2

X1 X2

E X1X2[ ] E X1[ ]E X2[ ]=

Var X1 X2+( ) Var X1( ) Var X2( )+=



148 Chapter 4

chapter 5. A further simplification, described in section 4.2.1.2, revolves around one spe-
cific probability density function used more often than any other when modeling error: the
Gaussian distribution.

4.2.1.2   Gaussian distribution
The Gaussian distribution, also called the normal distribution, is used across engineering
disciplines when a well-behaved error model is required for a random variable for which
no error model of greater felicity has been discovered. The Gaussian has many character-
istics that make it mathematically advantageous to other ad hoc probability density func-
tions. It is symmetric around the mean . There is no particular bias for being larger than
or smaller than , and this makes sense when there is no information to the contrary. The
Gaussian distribution is also unimodal, with a single peak that reaches a maximum at 
(necessary for any symmetric, unimodal distribution). This distribution also has tails (the
value of  as  approaches  and ) that only approach zero asymptotically. This
means that all amounts of error are possible, although very large errors may be highly
improbable. In this sense, the Gaussian is conservative. Finally, as seen in the formula for
the Gaussian probability density function, the distribution depends only on two parameters:

 (4.58)

The Gaussian’s basic shape is determined by the structure of this formula, and so the
only two parameters required to fully specify a particular Gaussian are its mean, , and its

Figure 4.31
The Gaussian function with  and . We shall refer to this as the reference Gaussian. The
value  is often refereed to as the signal quality; 95.44% of the values are falling within .
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standard deviation, . Figure 4.31 shows the Gaussian function with  and .
Suppose that a random variable  is modeled as a Gaussian. How does one identify the

chance that the value of  is within one standard deviation of ? In practice, this requires
integration of , the Gaussian function to compute the area under a portion of the curve:

 (4.59)

Unfortunately, there is no closed-form solution for the integral in equation (4.59), and
so the common technique is to use a Gaussian cumulative probability table. Using such a
table, one can compute the probability for various value ranges of :

;

;

.

For example, 95% of the values for  fall within two standard deviations of its mean.
This applies to any Gaussian distribution. As is clear from the above progression, under the
Gaussian assumption, once bounds are relaxed to , the overwhelming proportion of
values (and, therefore, probability) is subsumed.

4.2.2   Error propagation: combining uncertain measurements
The probability mechanisms above may be used to describe the errors associated with a
single sensor’s attempts to measure a real-world value. But in mobile robotics, one often
uses a series of measurements, all of them uncertain, to extract a single environmental mea-
sure. For example, a series of uncertain measurements of single points can be fused to
extract the position of a line (e.g., a hallway wall) in the environment (figure 4.36).

Consider the system in figure 4.32, where  are  input signals with a known proba-
bility distribution and  are m outputs. The question of interest is: what can we say about
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the probability distribution of the output signals  if they depend with known functions
 upon the input signals? Figure 4.33 depicts the 1D version of this error propagation

problem as an example.
The general solution can be generated using the first order Taylor expansion of . The

output covariance matrix  is given by the error propagation law:

 (4.60)

where

 = covariance matrix representing the input uncertainties;

 = covariance matrix representing the propagated uncertainties for the outputs;

 is the Jacobian matrix defined as

.  (4.61)

This is also the transpose of the gradient of .
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Figure 4.33
One-dimensional case of a nonlinear error propagation problem.
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We will not present a detailed derivation here but will use equation (4.60) to solve an
example problem in section 4.3.1.1.

4.3 Feature Extraction

An autonomous mobile robot must be able to determine its relationship to the environment
by making measurements with its sensors and then using those measured signals. A wide
variety of sensing technologies are available, as shown in the previous section. But every
sensor we have presented is imperfect: measurements always have error and, therefore,
uncertainty associated with them. Therefore, sensor inputs must be used in a way that
enables the robot to interact with its environment successfully in spite of measurement
uncertainty.

There are two strategies for using uncertain sensor input to guide the robot’s behavior.
One strategy is to use each sensor measurement as a raw and individual value. Such raw
sensor values could, for example, be tied directly to robot behavior, whereby the robot’s
actions are a function of its sensor inputs. Alternatively, the raw sensor values could be
used to update an intermediate model, with the robot’s actions being triggered as a function
of this model rather than the individual sensor measurements.

The second strategy is to extract information from one or more sensor readings first,
generating a higher-level percept that can then be used to inform the robot’s model and per-
haps the robot’s actions directly. We call this process feature extraction, and it is this next,
optional step in the perceptual interpretation pipeline (figure 4.34) that we will now discuss.

In practical terms, mobile robots do not necessarily use feature extraction and scene
interpretation for every activity. Instead, robots will interpret sensors to varying degrees
depending on each specific functionality. For example, in order to guarantee emergency
stops in the face of immediate obstacles, the robot may make direct use of raw forward-
facing range readings to stop its drive motors. For local obstacle avoidance, raw ranging
sensor strikes may be combined in an occupancy grid model, enabling smooth avoidance
of obstacles meters away. For map-building and precise navigation, the range sensor values
and even vision sensor measurements may pass through the complete perceptual pipeline,
being subjected to feature extraction followed by scene interpretation to minimize the
impact of individual sensor uncertainty on the robustness of the robot’s mapmaking and
navigation skills. The pattern that thus emerges is that, as one moves into more sophisti-
cated, long-term perceptual tasks, the feature extraction and scene interpretation aspects of
the perceptual pipeline become essential. 

Feature definition. Features are recognizable structures of elements in the environment.
They usually can be extracted from measurements and mathematically described. Good
features are always perceivable and easily detectable from the environment. We distinguish
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between low-level features (geometric primitives) like lines, circles, or polygons, and high-
level features (objects) such as edges, doors, tables, or a trash can. At one extreme, raw
sensor data provide a large volume of data, but with low distinctiveness of each individual
quantum of data. Making use of raw data has the potential advantage that every bit of infor-
mation is fully used, and thus there is a high conservation of information. Low-level fea-
tures are abstractions of raw data, and as such provide a lower volume of data while
increasing the distinctiveness of each feature. The hope, when one incorporates low-level
features, is that the features are filtering out poor or useless data, but of course it is also
likely that some valid information will be lost as a result of the feature extraction process.
High-level features provide maximum abstraction from the raw data, thereby reducing the
volume of data as much as possible while providing highly distinctive resulting features.
Once again, the abstraction process has the risk of filtering away important information,
potentially lowering data utilization.

Although features must have some spatial locality, their geometric extent can range
widely. For example, a corner feature inhabits a specific coordinate location in the geomet-
ric world. In contrast, a visual “fingerprint” identifying a specific room in an office building
applies to the entire room, but has a location that is spatially limited to the one particular
room.

In mobile robotics, features play an especially important role in the creation of environ-
mental models. They enable more compact and robust descriptions of the environment,
helping a mobile robot during both map-building and localization. When designing a
mobile robot, a critical decision revolves around choosing the appropriate features for the
robot to use. A number of factors are essential to this decision:

Target environment. For geometric features to be useful, the target geometries must be
readily detected in the actual environment. For example, line features are extremely useful
in office building environments due to the abundance of straight wall segments, while the
same features are virtually useless when navigating Mars.

Figure 4.34
The perceptual pipeline: from sensor readings to knowledge models.
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Available sensors. Obviously, the specific sensors and sensor uncertainty of the robot
impacts the appropriateness of various features. Armed with a laser rangefinder, a robot is
well qualified to use geometrically detailed features such as corner features owing to the
high-quality angular and depth resolution of the laser scanner. In contrast, a sonar-equipped
robot may not have the appropriate tools for corner feature extraction.

Computational power. Vision-based feature extraction can effect a significant computa-
tional cost, particularly in robots where the vision sensor processing is performed by one
of the robot’s main processors. 

Environment representation. Feature extraction is an important step toward scene inter-
pretation, and by this token the features extracted must provide information that is conso-
nant with the representation used for the environmental model. For example, nongeometric
vision-based features are of little value in purely geometric environmental models but can
be of great value in topological models of the environment. Figure 4.35 shows the applica-
tion of two different representations to the task of modeling an office building hallway.
Each approach has advantages and disadvantages, but extraction of line and corner features
has much more relevance to the representation on the left. Refer to chapter 5, section 5.5
for a close look at map representations and their relative trade-offs.

Figure 4.35
Environment representation and modeling: (a) feature based (continuous metric); (b) occupancy grid
(discrete metric). Courtesy of Sjur Vestli.

a) b)
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In the following two sections, we present specific feature extraction techniques based on
the two most popular sensing modalities of mobile robotics: range sensing and visual
appearance-based sensing.

4.3.1   Feature extraction based on range data (laser, ultrasonic, vision-based ranging)
Most of today’s features extracted from ranging sensors are geometric primitives such as
line segments or circles. The main reason for this is that for most other geometric primitives
the parametric description of the features becomes too complex and no closed-form solu-
tion exists. Here we describe line extraction in detail, demonstrating how the uncertainty
models presented above can be applied to the problem of combining multiple sensor mea-
surements. Afterward, we briefly present another very successful feature of indoor mobile
robots, the corner feature, and demonstrate how these features can be combined in a single
representation.

4.3.1.1   Line extraction
Geometric feature extraction is usually the process of comparing and matching measured
sensor data against a predefined description, or template, of the expect feature. Usually, the
system is overdetermined in that the number of sensor measurements exceeds the number
of feature parameters to be estimated. Since the sensor measurements all have some error,
there is no perfectly consistent solution and, instead, the problem is one of optimization.
One can, for example, extract the feature that minimizes the discrepancy with all sensor
measurements used (e.g,. least-squares estimation).

In this section we present an optimization-based solution to the problem of extracting a
line feature from a set of uncertain sensor measurements. For greater detail than is pre-
sented below, refer to [14, pp. 15 and 221].

Probabilistic line extraction from uncertain range sensor data. Our goal is to extract a
line feature based on a set of sensor measurements as shown in figure 4.36. There is uncer-
tainty associated with each of the noisy range sensor measurements, and so there is no
single line that passes through the set. Instead, we wish to select the best possible match,
given some optimization criterion.

More formally, suppose  ranging measurement points in polar coordinates
 are produced by the robot’s sensors. We know that there is uncertainty asso-

ciated with each measurement, and so we can model each measurement using two random
variables . In this analysis we assume that uncertainty with respect to the
actual value of  and  is independent. Based on equation (4.56) we can state this for-
mally:

 =  (4.62)

n
xi ρi θi,( )=

Xi Pi Qi,( )=
P Q

E Pi Pj⋅[ ] E Pi[ ]E Pj[ ] ∀ i j, 1 … n, ,=
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 =  (4.63)

 =  (4.64)

Furthermore, we assume that each random variable is subject to a Gaussian probability
density curve, with a mean at the true value and with some specified variance:

 ~  (4.65)

 ~  (4.66)

Given some measurement point , we can calculate the corresponding Euclidean
coordinates as  and . If there were no error, we would want to find
a line for which all measurements lie on that line:

 (4.67)

Of course there is measurement error, and so this quantity will not be zero. When it is
nonzero, this is a measure of the error between the measurement point  and the line,
specifically in terms of the minimum orthogonal distance between the point and the line. It
is always important to understand how the error that shall be minimized is being measured.
For example a number of line extraction techniques do not minimize this orthogonal point-

α

r

Figure 4.36
Estimating a line in the least-squares sense. The model parameters y (length of the perpendicular) and
α (its angle to the abscissa) uniquely describe a line.
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line distance, but instead the distance parallel to the y-axis between the point and the line.
A good illustration of the variety of optimization criteria is available in [17] where several
algorithms for fitting circles and ellipses are presented which minimize algebraic and geo-
metric distances. 

For each specific , we can write the orthogonal distance  between  and
the line as

.  (4.68)

If we consider each measurement to be equally uncertain, we can sum the square of all
errors together, for all measurement points, to quantify an overall fit between the line and
all of the measurements:

 (4.69)

Our goal is to minimize  when selecting the line parameters . We can do so by
solving the nonlinear equation system

.  (4.70)

The above formalism is considered an unweighted least-squares solution because no
distinction is made from among the measurements. In reality, each sensor measurement
may have its own, unique uncertainty based on the geometry of the robot and environment
when the measurement was recorded. For example, we know with regard to vision-based
stereo ranging that uncertainty and, therefore, variance increases as a square of the distance
between the robot and the object. To make use of the variance  that models the uncer-
tainty regarding distance  of a particular sensor measurement, we compute an individual
weight  for each measurement using the formula

2.  (4.71)

Then, equation (4.69) becomes

2. The issue of determining an adequate weight when  is given (and perhaps some additional
information) is complex in general and beyond the scope of this text. See [9] for a careful treatment.
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.  (4.72)

It can be shown that the solution to equation (4.70) in the weighted least-squares sense3

is

 (4.73)

 (4.74)

In practice, equation (4.73) uses the four-quadrant arc tangent (atan2)4.
Let us demonstrate equations (4.73) and (4.74) with a concrete example. The seventeen

measurements  in table 4.2 have been taken with a laser range sensor installed on a
mobile robot. We assume that the uncertainties of all measurements are equal, uncorrelated,
and that the robot was static during the measurement process.

Direct application of the above solution equations yields the line defined by 
and . This line represents the best fit in a least-squares sense and is shown visually
in figure 4.37.

Propagation of uncertainty during line extraction. Returning to the subject of section
4.2.3, we would like to understand how the uncertainties of specific range sensor measure-
ments propagate to govern the uncertainty of the extracted line. In other words, how does
uncertainty in  and  propagate in equations (4.73) and (4.74) to affect the uncertainty
of  and ? 

3. We follow here the notation of [14] and distinguish a weighted least-squares problem if  is
diagonal (input errors are mutually independent) and a generalized least-squares problem if  is
nondiagonal.
4. Atan2 computes but uses the signs of both x and y to determine the quadrant in which
the resulting angles lies. For example , whereas , a dis-
tinction which would be lost with a single-argument arc tangent function. 

S widi
2∑ wi ρi θi α–( )cos r–( )2∑= =

CX
CX

α 1
2
---atan

wiρi
2 2θisin∑ 2

Σwi

-------- wiwjρiρj θicos θjsin∑∑–

wiρi
2 2θicos∑ 1

Σwi

-------- wiwjρiρj θi θj+( )cos∑∑–
--------------------------------------------------------------------------------------------------------------------

 
 
 
 
 

=

r
wiρi θi α–( )cos∑

wi∑
----------------------------------------------=

x y⁄( )tan
1–

2 2– 2–,( )atan 135°–= 2 2 2,( )atan 45°–=

ρi θi,( )

α 37.36=
r 0.4=

ρi θi

α r



158 Chapter 4

Table 4.2 
Measured values

pointing angle of sensor θi
[deg]

range ρi
[m]

0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80

    0.5197
    0.4404
    0.4850
    0.4222
    0.4132
    0.4371
    0.3912
    0.3949
    0.3919
    0.4276
    0.4075
    0.3956
    0.4053
    0.4752
    0.5032
    0.5273
    0.4879

Figure 4.37
Extracted line from laser range measurements (+). The small lines at each measurement point repre-
sent the measurement uncertainty σ that is proportional to the square of the measurement distance. 
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This requires direct application of equation (4.60) with  and  representing the
random output variables of  and  respectively. The goal is to derive the  output
covariance matrix

,  (4.75)

given the  input covariance matrix

 (4.76)

and the system relationships [equations (4.73) and (4.74)]. Then by calculating the Jaco-
bian,

 (4.77)

we can instantiate the uncertainty propagation equation (4.63) to yield :

 (4.78)

Thus we have calculated the probability  of the extracted line  based on the
probabilities of the measurement points. For more details about this method refer to [6, 37]

4.3.1.2   Segmentation for line extraction
The previous section described how to extract a line feature given a set of range measure-
ments. Unfortunately, the feature extraction process is significantly more complex than
that. A mobile robot does indeed acquire a set of range measurements, but in general the
range measurements are not all part of one line. Rather, only some of the range measure-
ments should play a role in line extraction and, further, there may be more than one line
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feature represented in the measurement set. This more realistic scenario is shown in figure
4.38.

The process of dividing up a set of measurements into subsets that can be interpreted one
by one is termed segmentation and is an important aspect of both range-based and vision-
based perception. A diverse set of techniques exist for segmentation of sensor input in gen-
eral. This general problem is beyond the scope of this text and for details concerning seg-
mentation algorithms, refer to [91, 131].

For example, one segmentation technique is the merging, or bottom-up technique in
which smaller features are identified and then merged together based on decision criteria to
extract the goal features. Suppose that the problem of figure 4.38. is solved through merg-
ing. First, one may generate a large number of line segments based on adjacent groups of
range measurements. The second step would be to identify line segments that have a high
probability of belonging to the same extracted light feature. The simplest measure of the
closeness of two line segments5  and  in the model space is
given by Euclidean distance:

 (4.79)

5. Note: The lines are represented in polar coordinates.

Figure 4.38
Clustering: finding neighboring segments of a common line [37].
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The selection of all line segments  that contribute to the same line can now be done in
a threshold-based manner according to

 (4.80)

where  is a threshold value and  is the representation of the reference line (from a
model, average of a group of lines, etc.).

But the approach of equation (4.80) does not take into account the fact that for each mea-
surement and therefore for each line segment we have a measure of uncertainty. One can
improve upon this equation by selecting line segments that are weighted by their covariance
matrix :

 (4.81)

The distance measure of equation (4.81) discriminates the distance of uncertain points
in model space considerably more effectively by taking uncertainty into account explicitly.

4.3.1.3   Range histogram features
A histogram is a simple way to combine characteristic elements of an image. An angle his-
togram, as presented in figure 4.39, plots the statistics of lines extracted by two adjacent
range measurements. First, a 360-degree scan of the room is taken with the range scanner,
and the resulting “hits” are recorded in a map. Then the algorithm measures the relative
angle between any two adjacent hits (see figure 4.39b). After compensating for noise in the
readings (caused by the inaccuracies in position between adjacent hits), the angle histogram
shown in figure 4.39c can be built. The uniform direction of the main walls are clearly vis-
ible as peaks in the angle histogram. Detection of peaks yields only two main peaks: one
for each pair of parallel walls. This algorithm is very robust with regard to openings in the
walls, such as doors and windows, or even cabinets lining the walls.

4.3.1.4   Extracting other geometric features
Line features are of particular value for mobile robots operating in man-made environ-
ments, where, for example, building walls and hallway walls are usually straight. In gen-
eral, a mobile robot makes use of multiple features simultaneously, comprising a feature
set that is most appropriate for its operating environment. For indoor mobile robots, the line
feature is certainly a member of the optimal feature set. 

In addition, other geometric kernels consistently appear throughout the indoor man-
made environment. Corner features are defined as a point feature with an orientation. Step
discontinuities, defined as a step change perpendicular to the direction of hallway travel,
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are characterized by their form (convex or concave) and step size. Doorways, defined as
openings of the appropriate dimensions in walls, are characterized by their width.

Thus, the standard segmentation problem is not so simple as deciding on a mapping from
sensor readings to line segments, but rather it is a process in which features of different
types are extracted based on the available sensor measurements. Figure 4.40 shows a model
of an indoor hallway environment along with both indentation features (i.e., step disconti-
nuities) and doorways.

Note that different feature types can provide quantitatively different information for
mobile robot localization. The line feature, for example, provides two degrees of informa-
tion, angle and distance. But the step feature provides 2D relative position information as
well as angle.

The set of useful geometric features is essentially unbounded, and as sensor perfor-
mance improves we can only expect greater success at the feature extraction level. For
example, an interesting improvement upon the line feature described above relates to the

Figure 4.39
Angle histogram [155].
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advent of successful vision-based ranging systems. Because stereo vision provides a full
3D set of range measurements, one can extract plane features in addition to line features
from the resulting data set. Plane features are valuable in man-made environments due to
the flat walls, floors, and ceilings of our indoor environments. Thus they are promising as
another highly informative feature for mobile robots to use for mapping and localization.

4.3.2   Visual appearance based feature extraction
Visual interpretation is, as we have mentioned before, an extremely challenging problem
to fully solve. Significant research effort has been dedicated over the past several decades,
to inventing algorithms for understanding a scene based on 2D images and the research
efforts have slowly produced fruitful results. Covering the field of computer vision and
image processing is, of course, beyond the scope of this book. To explore these disciplines,
refer to [18, 29, 159]. An overview on some of the most popular approaches can be seen in
figure 4.41.

In section 4.1.8 we have already seen vision-based ranging and color-tracking sensors
that are commercially available for mobile robots. These specific vision applications have
witnessed commercial solutions primarily because the challenges are in both cases rela-
tively well focused and the resulting, problem-specific algorithms are straightforward. But
images contain much more than implicit depth information and color blobs. We would like
to solve the more general problem of extracting a large number of feature types from
images.

Figure 4.40
Multiple geometric features in a single hallway, including doorways and discontinuities in the width
of the hallway.
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This section presents some appearance-based feature extraction techniques that are rel-
evant to mobile robotics along these lines. Two key requirements must be met for a vision-
based feature extraction technique to have mobile robotic relevance. First, the method must
operate in real time. Mobile robots move through their environment, and so the processing
simply cannot be an off-line operation. Second, the method must be robust to the real-world
conditions outside of a laboratory. This means that carefully controlled illumination
assumptions and carefully painted objects are unacceptable requirements.

Throughout the following descriptions, keep in mind that vision-based interpretation is
primarily about the challenge of reducing information. A sonar unit produces perhaps fifty
bits of information per second. By contrast, a CCD camera can output 240 million bits per
second! The sonar produces a tiny amount of information from which we hope to draw
broader conclusions. But the CCD chip produces too much information, and this overabun-
dance of information mixes together relevant and irrelevant information haphazardly. For
example, we may intend to measure the color of a landmark. The CCD camera does not
simply report its color, but also measures the general illumination of the environment, the

Figure 4.41
Scheme and tools in computer vision. See also [18].
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direction of illumination, the defocusing caused by optics, the side effects imposed by
nearby objects with different colors, and so on. Therefore the problem of visual feature
extraction is largely one of removing the majority of irrelevant information in an image so
that the remaining information unambiguously describes specific features in the environ-
ment.

We divide vision-based feature extraction methods into two classes based on their spa-
tial extent. Spatially localized features are those features found in subregions of one or
more images, corresponding to specific locations in the physical world. Whole-image fea-
tures are those features that are functions of the entire image or set of images, correspond-
ing to a large visually connected area in the physical world. 

Before continuing it is important to note that all vision-based sensors supply images
with such a significant amount of noise that a first step usually consists of “cleaning” the
image before launching any feature extraction algorithm. Therefore, we first describe the
process of initial image filtering, or preprocessing.

Image preprocessing. Many image-processing algorithms make use of the second deriv-
ative of the image intensity. Indeed, the Laplacian of Gaussian method we studied in sec-
tion 4.1.8.2 for stereo ranging is such an example. Because of the susceptibility of such
high-order derivative algorithms to changes in illumination in the basic signal, it is impor-
tant to smooth the signal so that changes in intensity are due to real changes in the luminos-
ity of objects in the scene rather than random variations due to imaging noise. A standard
approach is convolution with a Gaussian distribution function, as we described earlier in
section 4.1.8.2:

 (4.82)

Of course, when approximated by a discrete kernel, such as a 3 x 3 table, the result is
essentially local, weighted averaging:

 (4.83)

Such a low-pass filter effectively removes high-frequency noise, and this in turn causes
the first derivative and especially the second derivative of intensity to be far more stable.
Because of the importance of gradients and derivatives to image processing, such Gaussian
smoothing preprocessing is a popular first step of virtually all computer vision algorithms.
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4.3.2.1   Spatially localized features
In the computer vision community many algorithms assume that the object of interest occu-
pies only a sub-region of the image, and therefore the features being sought are localized
spatially within images of the scene. Local image-processing techniques find features that
are local to a subset of pixels, and such local features map to specific locations in the phys-
ical world. This makes them particularly applicable to geometric models of the robot’s
environment.

The single most popular local feature extractor used by the mobile robotics community
is the edge detector, and so we begin with a discussion of this classic topic in computer
vision. However, mobile robots face the specific mobility challenges of obstacle avoidance
and localization. In view of obstacle avoidance, we present vision-based extraction of the
floor plane, enabling a robot to detect all areas that can be safely traversed. Finally, in view
of the need for localization we discuss the role of vision-based feature extraction in the
detection of robot navigation landmarks.

Edge detection. Figure 4.42 shows an image of a scene containing a part of a ceiling lamp
as well as the edges extracted from this image. Edges define regions in the image plane
where a significant change in the image brightness takes place. As shown in this example,
edge detection significantly reduces the amount of information in an image, and is therefore
a useful potential feature during image interpretation. The hypothesis is that edge contours
in an image correspond to important scene contours. As figure 4.42b shows, this is not
entirely true. There is a difference between the output of an edge detector and an ideal line
drawing. Typically, there are missing contours, as well as noise contours, that do not cor-
respond to anything of significance in the scene.

Figure 4.42
(a) Photo of a ceiling lamp. (b) Edges computed from (a).

a) b)
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The basic challenge of edge detection is visualized in figure 4.23. Figure 4.23 (top left)
shows the 1D section of an ideal edge. But the signal produced by a camera will look more
like figure 4.23 (top right). The location of the edge is still at the same x value, but a signif-
icant level of high-frequency noise affects the signal quality. 

A naive edge detector would simply differentiate, since an edge by definition is located
where there are large transitions in intensity. As shown in figure 4.23 (bottom right), dif-
ferentiation of the noisy camera signal results in subsidiary peaks that can make edge detec-
tion very challenging. A far more stable derivative signal can be generated simply by
preprocessing the camera signal using the Gaussian smoothing function described above.
Below, we present several popular edge detection algorithms, all of which operate on this
same basic principle, that the derivative(s) of intensity, following some form of smoothing,
comprises the basic signal from which to extract edge features.

Optimal edge detection Canny. The current reference edge detector throughout the
vision community was invented by John Canny in 1983 [30]. This edge detector was born
out of a formal approach in which Canny treated edge detection as a signal-processing
problem in which there are three explicit goals:

• Maximizing the signal-to-noise ratio;

• Achieving the highest precision possible on the location of edges;

• Minimizing the number of edge responses associated with each edge.

The Canny edge extractor smooths the image I via Gaussian convolution and then looks
for maxima in the (rectified) derivative. In practice the smoothing and differentiation are
combined into one operation because

 (4.84)

Thus, smoothing the image by convolving with a Gaussian  and then differentiating
is equivalent to convolving the image with , the first derivative of a Gaussian (figure
4.43b).

We wish to detect edges in any direction. Since  is directional, this requires applica-
tion of two perpendicular filters, just as we did for the Laplacian in equation (4.35). We
define the two filters as and . The result
is a basic algorithm for detecting edges at arbitrary orientations:

The algorithm for detecting edge pixels at an arbitrary orientation is as follows:

1. Convolve the image  with  and  to obtain the gradient compo-
nents  and , respectively.
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2. Define the square of the gradient magnitude .

3. Mark those peaks in  that are above some predefined threshold .

Once edge pixels are extracted, the next step is to construct complete edges. A popular
next step in this process is nonmaxima suppression. Using edge direction information, the
process involves revisiting the gradient value and determining whether or not it is at a local

Figure 4.43
(a) A Gaussian function. (b) The first derivative of a Gaussian function.
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Figure 4.44
(a) Two-dimensional Gaussian function. (b) Vertical filter. (c) Horizontal filter.
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maximum. If not, then the value is set to zero. This causes only the maxima to be preserved,
and thus reduces the thickness of all edges to a single pixel (figure 4.45).

Finally, we are ready to go from edge pixels to complete edges. First, find adjacent (or
connected) sets of edges and group them into ordered lists. Second, use thresholding to
eliminate the weakest edges.

Gradient edge detectors. On a mobile robot, computation time must be minimized to
retain the real-time behavior of the robot. Therefore simpler, discrete kernel operators are
commonly used to approximate the behavior of the Canny edge detector. One such early
operator was developed by Roberts in 1965 [29]. He used two 2 x 2 masks to calculate the
gradient across the edge in two diagonal directions. Let  be the value calculated from the
first mask and  from the second mask. Roberts obtained the gradient magnitude  with
the equation 

 ;    ;    (4.85)

Prewitt (1970) [29] used two 3 x 3 masks oriented in the row and column directions. Let
 be the value calculated from the first mask and  the value calculated from the second

mask. Prewitt obtained the gradient magnitude  and the gradient direction  taken in a
clockwise angle with respect to the column axis shown in the following equation.

 ;

Figure 4.45
(a) Example of an edge image; (b) Nonmaxima suppression of (a).
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 ;       ;    (4.86)

In the same year Sobel [29] used, like Prewitt, two 3 x 3 masks oriented in the row and
column direction. Let  be the value calculated from the first mask and  the value cal-
culated from the second mask. Sobel obtained the same results as Prewitt for the gradient
magnitude  and the gradient direction  taken in a clockwise angle with respect to the
column axis. Figure 4.46 shows application of the Sobel filter to a visual scene.
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Figure 4.46
Example of vision-based feature extraction with the different processing steps: (a) raw image data;
(b) filtered image using a Sobel filter; (c) thresholding, selection of edge pixels (d) nonmaxima sup-
pression.
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 ;

 ;       ;    (4.87)

Dynamic thresholding. Many image-processing algorithms have generally been tested in
laboratory conditions or by using static image databases. Mobile robots, however, operate
in dynamic real-world settings where there is no guarantee regarding optimal or even stable
illumination. A vision system for mobile robots has to adapt to the changing illumination.
Therefore a constant threshold level for edge detection is not suitable. The same scene with
different illumination results in edge images with considerable differences. To dynamically
adapt the edge detector to the ambient light, a more adaptive threshold is required, and one
approach involves calculating that threshold based on a statistical analysis of the image
about to be processed. 

To do this, a histogram of the gradient magnitudes of the processed image is calculated
(figure 4.47). With this simple histogram it is easy to consider only the  pixels with the
highest gradient magnitude for further calculation steps. The pixels are counted backward
starting at the highest magnitude. The gradient magnitude of the point where  is reached
will be used as the temporary threshold value.

The motivation for this technique is that the  pixels with the highest gradient are
expected to be the most relevant ones for the processed image. Furthermore, for each
image, the same number of relevant edge pixels is considered, independent of illumination.
It is important to pay attention to the fact that the number of pixels in the edge image deliv-
ered by the edge detector is not . Because most detectors use nonmaxima suppression, the
number of edge pixels will be further reduced. 

Straight edge extraction: Hough transforms. In mobile robotics the straight edge is
often extracted as a specific feature. Straight vertical edges, for example, can be used as
clues to the location of doorways and hallway intersections. The Hough transform is a
simple tool for extracting edges of a particular shape[16, 18]. Here we explain its applica-
tion to the problem of extracting straight edges.

Suppose a pixel  in the image  is part of an edge. Any straight-line edge includ-
ing point  must satisfy the equation: . This equation can only be
satisfied with a constrained set of possible values for  and . In other words, this equa-
tion is satisfied only by lines through I that pass through .
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Now consider a second pixel,  in . Any line passing through this second pixel
must satisfy the equation: . What if  and ? Then the line
defined by both equations is one and the same: it is the line that passes through both

 and . 
More generally, for all pixels that are part of a single straight line through , they must

all lie on a line defined by the same values for  and . The general definition of this line
is, of course, . The Hough transform uses this basic property, creating a mech-
anism so that each edge pixel can “vote” for various values of the  parameters. The
lines with the most votes at the end are straight edge features:

• Create a 2D array A with axes that tessellate the values of m and b.

• Initialize the array to zero:  for all values of .

• For each edge pixel  in , loop over all values of  and :
if  then .

• Search the cells in A to identify those with the largest value. Each such cell’s indices
 correspond to an extracted straight-line edge in .

Figure 4.47
(a) Number of pixels with a specific gradient magnitude in the image of figure 4.46(b). (b) Same as
(a), but with logarithmic scale
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Floor plane extraction. Obstacle avoidance is one of the basic tasks required of most
mobile robots. Range-based sensors provide effective means for identifying most types of
obstacles facing a mobile robot. In fact, because they directly measure range to objects in
the world, range-based sensors such as ultrasonic and laser rangefinders are inherently well
suited for the task of obstacle detection. However, each ranging sensor has limitations.
Ultrasonics have poor angular resolution and suffer from coherent reflection at shallow
angles. Most laser rangefinders are 2D, only detecting obstacles penetrating a specific
sensed plane. Stereo vision and depth from focus require the obstacles and floor plane to
have texture in order to enable correspondence and blurring respectively.

In addition to each individual shortcoming, range-based obstacle detection systems will
have difficulty detecting small or flat objects that are on the ground. For example, a vacuum
cleaner may need to avoid large, flat objects, such as paper or money left on the floor. In
addition, different types of floor surfaces cannot easily be discriminated by ranging. For
example, a sidewalk-following robot will have difficulty discriminating grass from pave-
ment using range sensing alone.

Floor plane extraction is a vision-based approach for identifying the traversable portions
of the ground. Because it makes use of edges and color in a variety of implementations,
such obstacle detection systems can easily detect obstacles in cases that are difficult for tra-
ditional ranging devices.

As is the case with all vision-based algorithms, floor plane extraction succeeds only in
environments that satisfy several important assumptions:

• Obstacles differ in appearance from the ground.

• The ground is flat and its angle to the camera is known.

• There are no overhanging obstacles.

The first assumption is a requirement in order to discriminate the ground from obstacles
using its appearance. A stronger version of this assumption, sometimes invoked, states that
the ground is uniform in appearance and different from all obstacles. The second and third
assumptions allow floor plane extraction algorithms to estimate the robot’s distance to
obstacles detected.

Floor plane extraction in artificial environments. In a controlled environment, the
floor, walls and obstacles can be designed so that the walls and obstacles appear signifi-
cantly different from the floor in a camera image. Shakey, the first autonomous robot devel-
oped from 1966 through 1972 at SRI, used vision-based floor plane extraction in a
manufactured environment for obstacle detection [115]. Shakey’s artificial environment
used textureless, homogeneously white floor tiles. Furthermore, the base of each wall was
painted with a high-contrast strip of black paint and the edges of all simple polygonal obsta-
cles were also painted black. 
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In Shakey’s environment, edges corresponded to nonfloor objects, and so the floor plane
extraction algorithm simply consisted of the application of an edge detector to the mono-
chrome camera image. The lowest edges detected in an image corresponded to the closest
obstacles, and the direction of straight-line edges extracted from the image provided clues
regarding not only the position but also the orientation of walls and polygonal obstacles.

Although this very simple appearance-based obstacle detection system was successful,
it should be noted that special care had to be taken at the time to create indirect lighting in
the laboratory such that shadows were not cast, as the system would falsely interpret the
edges of shadows as obstacles.

Adaptive floor plane extraction. Floor plane extraction has succeeded not only in artifi-
cial environments but in real-world mobile robot demonstrations in which a robot avoids
both static obstacles such as walls and dynamic obstacles such as passersby, based on seg-
mentation of the floor plane at a rate of several hertz. Such floor plane extraction algorithms
tend to use edge detection and color detection jointly while making certain assumptions
regarding the floor, for example, the floor’s maximum texture or approximate color range
[78].

Each system based on fixed assumptions regarding the floor’s appearance is limited to
only those environments satisfying its constraints. A more recent approach is that of adap-
tive floor plane extraction, whereby the parameters defining the expected appearance of the
floor are allowed to vary over time. In the simplest instance, one can assume that the pixels
at the bottom of the image (i.e., closest to the robot) are part of the floor and contain no
obstacles. Then, statistics computed on these “floor sample” pixels can be used to classify
the remaining image pixels.

The key challenge in adaptive systems is the choice of what statistics to compute using
the “floor sample” pixels. The most popular solution is to construct one or more histograms
based on the floor sample pixel values. Under “edge detection” above, we found histograms
to be useful in determining the best cut point in edge detection thresholding algorithms.
Histograms are also useful as discrete representations of distributions. Unlike the Gaussian
representation, a histogram can capture multi-modal distributions. Histograms can also be
updated very quickly and use very little processor memory. An intensity histogram of the
“floor sample” subregion  of image  is constructed as follows:

• As preprocessing, smooth , using a Gaussian smoothing operator.

• Initialize a histogram array H with n intensity values:  for .

• For every pixel  in  increment the histogram: += 1.

The histogram array  serves as a characterization of the appearance of the floor plane.
Often, several 1D histograms are constructed, corresponding to intensity, hue, and satura-
tion, for example. Classification of each pixel in  as floor plane or obstacle is performed
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by looking at the appropriate histogram counts for the qualities of the target pixel. For
example, if the target pixel has a hue that never occurred in the “floor sample,” then the
corresponding hue histogram will have a count of zero. When a pixel references a histo-
gram value below a predefined threshold, that pixel is classified as an obstacle. 

Figure 4.48 shows an appearance-based floor plane extraction algorithm operating on
both indoor and outdoor images [151]. Note that, unlike the static floor extraction algo-
rithm, the adaptive algorithm is able to successfully classify a human shadow due to the
adaptive histogram representation. An interesting extension of the work has been to not use
the static floor sample assumption, but rather to record visual history and to use, as the floor
sample, only the portion of prior visual images that has successfully rolled under the robot
during mobile robot motion.

Appearance-based extraction of the floor plane has been demonstrated on both indoor
and outdoor robots for real-time obstacle avoidance with a bandwidth of up to 10 Hz.
Applications include robotics lawn mowing, social indoor robots, and automated electric
wheelchairs.

4.3.2.2   Whole-image features
A single visual image provides so much information regarding a robot’s immediate sur-
roundings that an alternative to searching the image for spatially localized features is to
make use of the information captured by the entire image to extract a whole-image feature.

Figure 4.48
Examples of adaptive floor plane extraction. The trapezoidal polygon identifies the floor sampling
region.
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Whole-image features are not designed to identify specific spatial structures such as obsta-
cles or the position of specific landmarks. Rather, they serve as compact representations of
the entire local region. From the perspective of robot localization, the goal is to extract one
or more features from the image that are correlated well with the robot’s position. In other
words, small changes in robot position should cause only small changes to whole-image
features, while large changes in robot position should cause correspondingly large changes
to whole-image features.

We present two techniques for whole-image feature extraction below. The first tech-
nique is another popular application of the image histogramming approach. The resulting
image histogram comprises a set of whole-image features derived directly from the pixel
information of an image. The second technique, tiered extraction, covers approaches in
which a whole-image feature is built by first extracting spatially localized features, then
composing these features together to form a single metafeature. 

Direct extraction: image histograms. Recall that we wish to design whole-image fea-
tures that are insensitive to a small amount of robot motion while registering significant
changes for large-scale robot motion. A logical first step in designing a vision-based sensor
for this purpose is to maximize the field of view of the camera. As the field of view
increases, a small-scale structure in the robot’s environment occupies a smaller proportion
of the image, thereby mitigating the impact of individual scene objects on image character-
istics. The catadioptric camera system, now very popular in mobile robotics, offers an
extremely wide field of view [114]. This imaging system consists of a high-quality CCD
camera mounted, together with customized optics, toward a parabolic mirror. The image
provides a 360-degree view of the robot’s environment, as shown in figure 4.49.

Figure 4.49
Two typical images acquired by the OmniCam catadioptric camera system.
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The catadioptric image is a 360-degree image warped onto a 2D image surface. Because
of this, it offers another critical advantage in terms of sensitivity to small-scale robot
motion. If the camera is mounted vertically on the robot so that the image represents the
environment surrounding the robot (i.e., its horizon), then rotation of the camera and robot
simply results in image rotation. In short, the catadioptric camera can be rotationally invari-
ant to field of view.

Of course, mobile robot rotation will still change the image; that is, pixel positions will
change, although the new image will simply be a rotation of the original image. But we
intend to extract image features via histogramming. Because histogramming is a function
of the set of pixel values and not the position of each pixel, the process is pixel position
invariant. When combined with the catadioptric camera’s field of view invariance, we can
create a system that is invariant to robot rotation and insensitive to small-scale robot trans-
lation.

A color camera’s output image generally contains useful information along multiple
bands: , , and  values as well as hue, saturation, and luminance values. The simplest
histogram-based extraction strategy is to build separate 1D histograms characterizing each
band. Given a color camera image, , the first step is to create mappings from  to each
of the  available bands. We use  to refer to an array storing the values in band  for all
pixels in . Each band-specific histogram  is calculated as before:

• As preprocessing, smooth  using a Gaussian smoothing operator.

• Initialize  with n levels:  for .

• For every pixel (x,y) in , increment the histogram: .

Given the image shown in figure 4.49, the image histogram technique extracts six his-
tograms (for each of , , , hue, saturation, and luminance) as shown in figure 4.50. In
order to make use of such histograms as whole-image features, we need ways to compare
to histograms to quantify the likelihood that the histograms map to nearby robot positions.
The problem of defining useful histogram distance metrics is itself an important subfield
within the image retrieval field. For an overview refer to [127]. One of the most successful
distance metrics encountered in mobile robot localization is the Jeffrey divergence. Given
two histograms  and , with  and  denoting the histogram entries, the Jeffrey diver-
gence  is defined as

 (4.88)

Using measures such as the Jeffrey divergence, mobile robots have used whole-image
histogram features to identify their position in real time against a database of previously
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recorded images of locations in their environment. Using this whole-image extraction
approach, a robot can readily recover the particular hallway or particular room in which it
is located [152].

Tiered extraction: image fingerprint extraction. An alternative to extracting a whole-
image feature directly from pixel values is to use a tiered approach: first identify spatially
localized features in the image, then translate from this set of local features to a single
metafeature for the whole image. We describe one particular implementation of this
approach, in which the resulting whole-image feature is called the image fingerprint [95].
As with other whole-image extraction techniques, because low sensitivity to small robot
motions is desired, the system makes use of a 360-degree panoramic image, here con-
structed as a mosaic of images captured with a standard CMOS chip camera.

The first extraction tier searches the panoramic image for spatially localized features:
vertical edges and sixteen discrete hues of color. The vertical edge detector is a straightfor-
ward gradient approach implementing a horizontal difference operator. Vertical edges are
“voted upon” by each edge pixel just as in a vertical edge Hough transform. As described

Figure 4.50
Six 1D histograms of the image above. A 5 x 5 smoothing filter was convolved with each band before
histogramming.
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in section 4.3.2.1, an adaptive threshold is used to reduce the number of edges. Suppose the
Hough table’s tallies for each candidate vertical line have a mean  and a standard devia-
tion . The chosen threshold is simply . 

Vertical color bands are identified in largely the same way, identifying statistics over the
occurrence of each color, then filtering out all candidate color patches except those with
tallies greater than . Figure 4.51 shows two sample panoramic images and their asso-
ciated fingerprints. Note that each fingerprint is converted to an ASCII string representa-
tion.

Just as with histogram distance metrics in the case of image histogramming, we need a
quantifiable measure of the distance between two fingerprint strings. String-matching algo-
rithms are yet another large field of study, with particularly interesting applications today
in the areas of genetics [34]. Note that we may have strings that differ not just in a single
element value, but even in their overall length. For example, figure 4.52 depicts three actual

µ
σ µ σ+

µ σ+

Figure 4.51
Two panoramic images and their associated fingerprint sequences [95].

Figure 4.52
Three actual string sequences. The top two are strings extracted by the robot at the same position [95].
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sequences generated using the above algorithm. The top string should match Place 1, but
note that there are deletions and insertions between the two strings.

The technique used in the fingerprinting approach for string differencing is known as a
minimum energy algorithm. Taken from the stereo vision community, this optimization-
based algorithm will find the minimum energy required to “transform” one sequence into
another sequence. The result is a distance metric that is relatively insensitive to the addition
or subtraction of individual local features while still able to robustly identify the correct
matching string in a variety of circumstances.

It should be clear from the previous two sections that whole-image feature extraction is
straightforward with vision-based perception and can be applicable to mobile robot local-
ization. But it is spatially localized features that continue to play a dominant role because
of their immediate application to the more urgent need for real-time obstacle avoidance.



5 Mobile Robot Localization

5.1 Introduction

Navigation is one of the most challenging competences required of a mobile robot. Success
in navigation requires success at the four building blocks of navigation: perception, the
robot must interpret its sensors to extract meaningful data; localization, the robot must
determine its position in the environment (figure 5.1); cognition, the robot must decide how
to act to achieve its goals; and motion control, the robot must modulate its motor outputs to
achieve the desired trajectory.

Of these four components (figure 5.2), localization has received the greatest research
attention in the past decade and, as a result, significant advances have been made on this
front. In this chapter, we explore the successful localization methodologies of recent years.
First, section 5.2 describes how sensor and effector uncertainty is responsible for the diffi-
culties of localization. Then, section 5.3 describes two extreme approaches to dealing with
the challenge of robot localization: avoiding localization altogether, and performing
explicit map-based localization. The remainder of the chapter discusses the question of rep-

Figure 5.1
Where am I?

?
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resentation, then presents case studies of successful localization systems using a variety of
representations and techniques to achieve mobile robot localization competence.

5.2 The Challenge of Localization: Noise and Aliasing

If one could attach an accurate GPS (global positioning system) sensor to a mobile robot,
much of the localization problem would be obviated. The GPS would inform the robot of
its exact position, indoors and outdoors, so that the answer to the question, “Where am I?”,
would always be immediately available. Unfortunately, such a sensor is not currently prac-
tical. The existing GPS network provides accuracy to within several meters, which is unac-
ceptable for localizing human-scale mobile robots as well as miniature mobile robots such
as desk robots and the body-navigating nanorobots of the future. Furthermore, GPS tech-
nologies cannot function indoors or in obstructed areas and are thus limited in their work-
space.

But, looking beyond the limitations of GPS, localization implies more than knowing
one’s absolute position in the Earth’s reference frame. Consider a robot that is interacting
with humans. This robot may need to identify its absolute position, but its relative position
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Figure 5.2
General schematic for mobile robot localization.
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with respect to target humans is equally important. Its localization task can include identi-
fying humans using its sensor array, then computing its relative position to the humans.
Furthermore, during the cognition step a robot will select a strategy for achieving its goals.
If it intends to reach a particular location, then localization may not be enough. The robot
may need to acquire or build an environmental model, a map, that aids it in planning a path
to the goal. Once again, localization means more than simply determining an absolute pose
in space; it means building a map, then identifying the robot’s position relative to that map.

Clearly, the robot’s sensors and effectors play an integral role in all the above forms of
localization. It is because of the inaccuracy and incompleteness of these sensors and effec-
tors that localization poses difficult challenges. This section identifies important aspects of
this sensor and effector suboptimality.

5.2.1   Sensor noise
Sensors are the fundamental robot input for the process of perception, and therefore the
degree to which sensors can discriminate the world state is critical. Sensor noise induces a
limitation on the consistency of sensor readings in the same environmental state and, there-
fore, on the number of useful bits available from each sensor reading. Often, the source of
sensor noise problems is that some environmental features are not captured by the robot’s
representation and are thus overlooked.

For example, a vision system used for indoor navigation in an office building may use
the color values detected by its color CCD camera. When the sun is hidden by clouds, the
illumination of the building’s interior changes because of the windows throughout the
building. As a result, hue values are not constant. The color CCD appears noisy from the
robot’s perspective as if subject to random error, and the hue values obtained from the CCD
camera will be unusable, unless the robot is able to note the position of the sun and clouds
in its representation.

Illumination dependence is only one example of the apparent noise in a vision-based
sensor system. Picture jitter, signal gain, blooming, and blurring are all additional sources
of noise, potentially reducing the useful content of a color video image.

Consider the noise level (i.e., apparent random error) of ultrasonic range-measuring sen-
sors (e.g., sonars) as discussed in section 4.1.2.3. When a sonar transducer emits sound
toward a relatively smooth and angled surface, much of the signal will coherently reflect
away, failing to generate a return echo. Depending on the material characteristics, a small
amount of energy may return nonetheless. When this level is close to the gain threshold of
the sonar sensor, then the sonar will, at times, succeed and, at other times, fail to detect the
object. From the robot’s perspective, a virtually unchanged environmental state will result
in two different possible sonar readings: one short and one long.

The poor signal-to-noise ratio of a sonar sensor is further confounded by interference
between multiple sonar emitters. Often, research robots have between twelve and forty-
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eight sonars on a single platform. In acoustically reflective environments, multipath inter-
ference is possible between the sonar emissions of one transducer and the echo detection
circuitry of another transducer. The result can be dramatically large errors (i.e., underesti-
mation) in ranging values due to a set of coincidental angles. Such errors occur rarely, less
than 1% of the time, and are virtually random from the robot’s perspective.

In conclusion, sensor noise reduces the useful information content of sensor readings.
Clearly, the solution is to take multiple readings into account, employing temporal fusion
or multisensor fusion to increase the overall information content of the robot’s inputs.

5.2.2   Sensor aliasing
A second shortcoming of mobile robot sensors causes them to yield little information con-
tent, further exacerbating the problem of perception and, thus, localization. The problem,
known as sensor aliasing, is a phenomenon that humans rarely encounter. The human sen-
sory system, particularly the visual system, tends to receive unique inputs in each unique
local state. In other words, every different place looks different. The power of this unique
mapping is only apparent when one considers situations where this fails to hold. Consider
moving through an unfamiliar building that is completely dark. When the visual system
sees only black, one’s localization system quickly degrades. Another useful example is that
of a human-sized maze made from tall hedges. Such mazes have been created for centuries,
and humans find them extremely difficult to solve without landmarks or clues because,
without visual uniqueness, human localization competence degrades rapidly.

In robots, the nonuniqueness of sensor readings, or sensor aliasing, is the norm and not
the exception. Consider a narrow-beam rangefinder such as an ultrasonic or infrared
rangefinder. This sensor provides range information in a single direction without any addi-
tional data regarding material composition such as color, texture, and hardness. Even for a
robot with several such sensors in an array, there are a variety of environmental states that
would trigger the same sensor values across the array. Formally, there is a many-to-one
mapping from environmental states to the robot’s perceptual inputs. Thus, the robot’s per-
cepts cannot distinguish from among these many states. A classic problem with sonar-
based robots involves distinguishing between humans and inanimate objects in an indoor
setting. When facing an apparent obstacle in front of itself, should the robot say “Excuse
me” because the obstacle may be a moving human, or should the robot plan a path around
the object because it may be a cardboard box? With sonar alone, these states are aliased and
differentiation is impossible.

The problem posed to navigation because of sensor aliasing is that, even with noise-free
sensors, the amount of information is generally insufficient to identify the robot’s position
from a single-percept reading. Thus techniques must be employed by the robot programmer
that base the robot’s localization on a series of readings and, thus, sufficient information to
recover the robot’s position over time.
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5.2.3   Effector noise
The challenges of localization do not lie with sensor technologies alone. Just as robot sen-
sors are noisy, limiting the information content of the signal, so robot effectors are also
noisy. In particular, a single action taken by a mobile robot may have several different pos-
sible results, even though from the robot’s point of view the initial state before the action
was taken is well known.

In short, mobile robot effectors introduce uncertainty about future state. Therefore the
simple act of moving tends to increase the uncertainty of a mobile robot. There are, of
course, exceptions. Using cognition, the motion can be carefully planned so as to minimize
this effect, and indeed sometimes to actually result in more certainty. Furthermore, when
the robot’s actions are taken in concert with careful interpretation of sensory feedback, it
can compensate for the uncertainty introduced by noisy actions using the information pro-
vided by the sensors. 

First, however, it is important to understand the precise nature of the effector noise that
impacts mobile robots. It is important to note that, from the robot’s point of view, this error
in motion is viewed as an error in odometry, or the robot’s inability to estimate its own posi-
tion over time using knowledge of its kinematics and dynamics. The true source of error
generally lies in an incomplete model of the environment. For instance, the robot does not
model the fact that the floor may be sloped, the wheels may slip, and a human may push
the robot. All of these unmodeled sources of error result in inaccuracy between the physical
motion of the robot, the intended motion of the robot, and the proprioceptive sensor esti-
mates of motion.

In odometry (wheel sensors only) and dead reckoning (also heading sensors) the posi-
tion update is based on proprioceptive sensors. The movement of the robot, sensed with
wheel encoders or heading sensors or both, is integrated to compute position. Because the
sensor measurement errors are integrated, the position error accumulates over time. Thus
the position has to be updated from time to time by other localization mechanisms. Other-
wise the robot is not able to maintain a meaningful position estimate in the long run. 

In the following we concentrate on odometry based on the wheel sensor readings of a
differential-drive robot only (see also [4, 57, 58]). Using additional heading sensors (e.g.,
gyroscope) can help to reduce the cumulative errors, but the main problems remain the
same.

There are many sources of odometric error, from environmental factors to resolution:

• Limited resolution during integration (time increments, measurement resolution, etc.);

• Misalignment of the wheels (deterministic);

• Uncertainty in the wheel diameter and in particular unequal wheel diameter (determin-
istic);

• Variation in the contact point of the wheel;
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• Unequal floor contact (slipping, nonplanar surface, etc.).

Some of the errors might be deterministic (systematic), thus they can be eliminated by
proper calibration of the system. However, there are still a number of nondeterministic
(random) errors which remain, leading to uncertainties in position estimation over time.
From a geometric point of view one can classify the errors into three types:

1. Range error: integrated path length (distance) of the robot’s movement
→ sum of the wheel movements

2. Turn error: similar to range error, but for turns
→ difference of the wheel motions

3. Drift error: difference in the error of the wheels leads to an error in the robot’s angular
orientation

Over long periods of time, turn and drift errors far outweigh range errors, since their con-
tribution to the overall position error is nonlinear. Consider a robot whose position is ini-
tially perfectly well-known, moving forward in a straight line along the -axis. The error
in the -position introduced by a move of  meters will have a component of ,
which can be quite large as the angular error  grows. Over time, as a mobile robot moves
about the environment, the rotational error between its internal reference frame and its orig-
inal reference frame grows quickly. As the robot moves away from the origin of these ref-
erence frames, the resulting linear error in position grows quite large. It is instructive to
establish an error model for odometric accuracy and see how the errors propagate over
time.

5.2.4   An error model for odometric position estimation
Generally the pose (position) of a robot is represented by the vector

 (5.1)

For a differential-drive robot the position can be estimated starting from a known posi-
tion by integrating the movement (summing the incremental travel distances). For a dis-
crete system with a fixed sampling interval  the incremental travel distances

 are

 (5.2)
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 (5.3)

  (5.4)

 (5.5)

where

= path traveled in the last sampling interval;

= traveled distances for the right and left wheel respectively;

= distance between the two wheels of differential-drive robot.

Thus we get the updated position :

 (5.6)

By using the relation for  of equations (5.4) and (5.5) we further obtain the
basic equation for odometric position update (for differential drive robots):
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Figure 5.3
Movement of a differential-drive robot.

v(t)

ω(t)

θ

XI

XI

p'

p'
x'
y'
θ'

p
∆s θ ∆θ 2⁄+( )cos
∆s θ ∆θ 2⁄+( )sin

∆θ
+

x

y

θ

∆s θ ∆θ 2⁄+( )cos
∆s θ ∆θ 2⁄+( )sin

∆θ
+= = =

∆s ∆θ;( )



188 Chapter 5

 (5.7)

As we discussed earlier, odometric position updates can give only a very rough estimate
of the actual position. Owing to integration errors of the uncertainties of  and the motion
errors during the incremental motion  the position error based on odometry inte-
gration grows with time. 

In the next step we will establish an error model for the integrated position  to obtain
the covariance matrix  of the odometric position estimate. To do so, we assume that at
the starting point the initial covariance matrix  is known. For the motion increment

 we assume the following covariance matrix :

 (5.8)

where  and  are the distances traveled by each wheel, and ,  are error con-
stants representing the nondeterministic parameters of the motor drive and the wheel-floor
interaction. As you can see, in equation (5.8) we made the following assumptions:

• The two errors of the individually driven wheels are independent5;

• The variance of the errors (left and right wheels) are proportional to the absolute value
of the traveled distances .

These assumptions, while not perfect, are suitable and will thus be used for the further
development of the error model. The motion errors are due to imprecise movement because
of deformation of wheel, slippage, unequal floor, errors in encoders, and so on. The values
for the error constants  and  depend on the robot and the environment and should be
experimentally established by performing and analyzing representative movements.

If we assume that  and  are uncorrelated and the derivation of f [equa-
tion (5.7)] is reasonably approximated by the first-order Taylor expansion (linearization),
we conclude, using the error propagation law (see section 4.2.2),

5. If there is more knowledge regarding the actual robot kinematics, the correlation terms of the
covariance matrix could also be used.
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 (5.9)

The covariance matrix  is, of course, always given by the  of the previous step,
and can thus be calculated after specifying an initial value (e.g., 0). 

Using equation (5.7) we can develop the two Jacobians,  and :

 (5.10)

 (5.11)

The details for arriving at equation (5.11) are
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   ;      ;      ;    (5.15)

we obtain equation (5.11).
Figures 5.4 and 5.5 show typical examples of how the position errors grow with time.

The results have been computed using the error model presented above. 
Once the error model has been established, the error parameters must be specified. One

can compensate for deterministic errors properly calibrating the robot. However the error
parameters specifying the nondeterministic errors can only be quantified by statistical
(repetitive) measurements. A detailed discussion of odometric errors and a method for cal-
ibration and quantification of deterministic and nondeterministic errors can be found in [5].
A method for on-the-fly odometry error estimation is presented in [105]. 
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Figure 5.4
Growth of the pose uncertainty for straight-line movement: Note that the uncertainty in y grows much
faster than in the direction of movement. This results from the integration of the uncertainty about the
robot’s orientation. The ellipses drawn around the robot positions represent the uncertainties in the
x,y direction (e.g. ). The uncertainty of the orientation  is not represented in the picture although
its effect can be indirectly observed.
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5.3 To Localize or Not to Localize: Localization-Based Navigation versus 
Programmed Solutions

Figure 5.6 depicts a standard indoor environment that a mobile robot navigates. Suppose
that the mobile robot in question must deliver messages between two specific rooms in this
environment: rooms A and B. In creating a navigation system, it is clear that the mobile
robot will need sensors and a motion control system. Sensors are absolutely required to
avoid hitting moving obstacles such as humans, and some motion control system is required
so that the robot can deliberately move.

It is less evident, however, whether or not this mobile robot will require a localization
system. Localization may seem mandatory in order to successfully navigate between the
two rooms. It is through localizing on a map, after all, that the robot can hope to recover its
position and detect when it has arrived at the goal location. It is true that, at the least, the
robot must have a way of detecting the goal location. However, explicit localization with
reference to a map is not the only strategy that qualifies as a goal detector.

An alternative, espoused by the behavior-based community, suggests that, since sensors
and effectors are noisy and information-limited, one should avoid creating a geometric map
for localization. Instead, this community suggests designing sets of behaviors that together
result in the desired robot motion. Fundamentally, this approach avoids explicit reasoning
about localization and position, and thus generally avoids explicit path planning as well.

Figure 5.5
Growth of the pose uncertainty for circular movement (r = const): Again, the uncertainty perpendic-
ular to the movement grows much faster than that in the direction of movement. Note that the main
axis of the uncertainty ellipse does not remain perpendicular to the direction of movement.
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This technique is based on a belief that there exists a procedural solution to the particular
navigation problem at hand. For example, in figure 5.6, the behavioralist approach to nav-
igating from room A to room B might be to design a left-wall following behavior and a
detector for room B that is triggered by some unique queue in room B, such as the color of
the carpet. Then the robot can reach room B by engaging the left-wall follower with the
room B detector as the termination condition for the program.

The architecture of this solution to a specific navigation problem is shown in figure 5.7.
The key advantage of this method is that, when possible, it may be implemented very
quickly for a single environment with a small number of goal positions. It suffers from
some disadvantages, however. First, the method does not directly scale to other environ-
ments or to larger environments. Often, the navigation code is location-specific, and the
same degree of coding and debugging is required to move the robot to a new environment. 

Second, the underlying procedures, such as left-wall-follow, must be carefully designed
to produce the desired behavior. This task may be time-consuming and is heavily dependent
on the specific robot hardware and environmental characteristics. 

Third, a behavior-based system may have multiple active behaviors at any one time.
Even when individual behaviors are tuned to optimize performance, this fusion and rapid
switching between multiple behaviors can negate that fine-tuning. Often, the addition of
each new incremental behavior forces the robot designer to retune all of the existing behav-
iors again to ensure that the new interactions with the freshly introduced behavior are all
stable.

Figure 5.6
A sample environment.

A

B
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In contrast to the behavior-based approach, the map-based approach includes both local-
ization and cognition modules (see figure 5.8). In map-based navigation, the robot explic-
itly attempts to localize by collecting sensor data, then updating some belief about its
position with respect to a map of the environment. The key advantages of the map-based
approach for navigation are as follows:

• The explicit, map-based concept of position makes the system’s belief about position
transparently available to the human operators.

• The existence of the map itself represents a medium for communication between human
and robot: the human can simply give the robot a new map if the robot goes to a new
environment.

Figure 5.7
An architecture for behavior-based navigation.
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Figure 5.8
An architecture for map-based (or model-based) navigation.
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• The map, if created by the robot, can be used by humans as well, achieving two uses.

The map-based approach will require more up-front development effort to create a nav-
igating mobile robot. The hope is that the development effort results in an architecture that
can successfully map and navigate a variety of environments, thereby amortizing the up-
front design cost over time.

Of course the key risk of the map-based approach is that an internal representation,
rather than the real world itself, is being constructed and trusted by the robot. If that model
diverges from reality (i.e., if the map is wrong), then the robot’s behavior may be undesir-
able, even if the raw sensor values of the robot are only transiently incorrect.

In the remainder of this chapter, we focus on a discussion of map-based approaches and,
specifically, the localization component of these techniques. These approaches are partic-
ularly appropriate for study given their significant recent successes in enabling mobile
robots to navigate a variety of environments, from academic research buildings, to factory
floors, and to museums around the world.

5.4 Belief Representation

The fundamental issue that differentiates various map-based localization systems is the
issue of representation. There are two specific concepts that the robot must represent, and
each has its own unique possible solutions. The robot must have a representation (a model)
of the environment, or a map. What aspects of the environment are contained in this map?
At what level of fidelity does the map represent the environment? These are the design
questions for map representation.

The robot must also have a representation of its belief regarding its position on the map.
Does the robot identify a single unique position as its current position, or does it describe
its position in terms of a set of possible positions? If multiple possible positions are
expressed in a single belief, how are those multiple positions ranked, if at all? These are the
design questions for belief representation.

Decisions along these two design axes can result in varying levels of architectural com-
plexity, computational complexity, and overall localization accuracy. We begin by discuss-
ing belief representation. The first major branch in a taxonomy of belief representation
systems differentiates between single-hypothesis and multiple-hypothesis belief systems.
The former covers solutions in which the robot postulates its unique position, whereas the
latter enables a mobile robot to describe the degree to which it is uncertain about its posi-
tion. A sampling of different belief and map representations is shown in figure 5.9. 

5.4.1   Single-hypothesis belief
The single-hypothesis belief representation is the most direct possible postulation of mobile
robot position. Given some environmental map, the robot’s belief about position is
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Figure 5.9
Belief representation regarding the robot position (1D) in continuous and discretized (tessellated)
maps. (a) Continuous map with single-hypothesis belief, e.g., single Gaussian centered at a single
continuous value. (b) Continuous map with multiple-hypothesis belief, e.g;. multiple Gaussians cen-
tered at multiple continuous values. (c) Discretized (decomposed) grid map with probability values
for all possible robot positions, e.g.; Markov approach. (d) Discretized topological map with proba-
bility value for all possible nodes (topological robot positions), e.g.; Markov approach.
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expressed as a single unique point on the map. In figure 5.10, three examples of a single-
hypothesis belief are shown using three different map representations of the same actual
environment (figure 5.10a). In figure 5.10b, a single point is geometrically annotated as the
robot’s position in a continuous 2D geometric map. In figure 5.10c, the map is a discrete,
tessellated map, and the position is noted at the same level of fidelity as the map cell size.
In figure 5.10d, the map is not geometric at all but abstract and topological. In this case, the
single hypothesis of position involves identifying a single node i in the topological graph
as the robot’s position. 

The principal advantage of the single-hypothesis representation of position stems from
the fact that, given a unique belief, there is no position ambiguity. The unambiguous nature
of this representation facilitates decision-making at the robot’s cognitive level (e.g., path
planning). The robot can simply assume that its belief is correct, and can then select its
future actions based on its unique position. 

Just as decision-making is facilitated by a single-position hypothesis, so updating the
robot’s belief regarding position is also facilitated, since the single position must be
updated by definition to a new, single position. The challenge with this position update
approach, which ultimately is the principal disadvantage of single-hypothesis representa-
tion, is that robot motion often induces uncertainty due to effector and sensor noise. There-
fore, forcing the position update process to always generate a single hypothesis of position
is challenging and, often, impossible.

5.4.2   Multiple-hypothesis belief
In the case of multiple-hypothesis beliefs regarding position, the robot tracks not just a
single possible position but a possibly infinite set of positions. 

In one simple example originating in the work of Jean-Claude Latombe [21, 99], the
robot’s position is described in terms of a convex polygon positioned in a 2D map of the
environment. This multiple-hypothesis representation communicates the set of possible
robot positions geometrically, with no preference ordering over the positions. Each point
in the map is simply either contained by the polygon and, therefore, in the robot’s belief set,
or outside the polygon and thereby excluded. Mathematically, the position polygon serves
to partition the space of possible robot positions. Such a polygonal representation of the
multiple-hypothesis belief can apply to a continuous, geometric map of the environment
[35] or, alternatively, to a tessellated, discrete approximation to the continuous environ-
ment.

It may be useful, however, to incorporate some ordering on the possible robot positions,
capturing the fact that some robot positions are likelier than others. A strategy for repre-
senting a continuous multiple-hypothesis belief state along with a preference ordering over
possible positions is to model the belief as a mathematical distribution. For example, [50,
142] notate the robot’s position belief using an  point in the 2D environment as theX Y,{ }
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Figure 5.10
Three examples of single hypotheses of position using different map representations: (a) real map
with walls, doors and furniture; (b) line-based map  → around 100 lines with two parameters; (c)
occupancy grid-based map → around 3000 grid cells size 50 x 50 cm; (d) topological map using line
features (Z/S lines) and doors → around 50 features and 18 nodes.
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mean  plus a standard deviation parameter , thereby defining a Gaussian distribution.
The intended interpretation is that the distribution at each position represents the probabil-
ity assigned to the robot being at that location. This representation is particularly amenable
to mathematically defined tracking functions, such as the Kalman filter, that are designed
to operate efficiently on Gaussian distributions.

An alternative is to represent the set of possible robot positions, not using a single Gaus-
sian probability density function, but using discrete markers for each possible position. In
this case, each possible robot position is individually noted along with a confidence or
probability parameter (see figure 5.11). In the case of a highly tessellated map this can
result in thousands or even tens of thousands of possible robot positions in a single-belief
state.

The key advantage of the multiple-hypothesis representation is that the robot can explic-
itly maintain uncertainty regarding its position. If the robot only acquires partial informa-
tion regarding position from its sensors and effectors, that information can conceptually be
incorporated in an updated belief.

A more subtle advantage of this approach revolves around the robot’s ability to explic-
itly measure its own degree of uncertainty regarding position. This advantage is the key to
a class of localization and navigation solutions in which the robot not only reasons about
reaching a particular goal but reasons about the future trajectory of its own belief state. For
instance, a robot may choose paths that minimize its future position uncertainty. An exam-
ple of this approach is [141], in which the robot plans a path from point  to point  that
takes it near a series of landmarks in order to mitigate localization difficulties. This type of

µ σ

Figure 5.11
Example of multiple-hypothesis tracking (courtesy of W. Burgard [49]). The belief state that is
largely distributed becomes very certain after moving to position 4. Note that darker coloring repre-
sents higher probability.

Belief states at positions 2, 3, and 4Path of the robot
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explicit reasoning about the effect that trajectories will have on the quality of localization
requires a multiple-hypothesis representation.

One of the fundamental disadvantages of multiple-hypothesis approaches involves deci-
sion-making. If the robot represents its position as a region or set of possible positions, then
how shall it decide what to do next? Figure 5.11 provides an example. At position 3, the
robot’s belief state is distributed among five hallways separately. If the goal of the robot is
to travel down one particular hallway, then given this belief state, what action should the
robot choose? 

The challenge occurs because some of the robot’s possible positions imply a motion tra-
jectory that is inconsistent with some of its other possible positions. One approach that we
will see in the case studies below is to assume, for decision-making purposes, that the robot
is physically at the most probable location in its belief state, then to choose a path based on
that current position. But this approach demands that each possible position have an asso-
ciated probability.

In general, the right approach to such decision-making problems would be to decide on
trajectories that eliminate the ambiguity explicitly. But this leads us to the second major
disadvantage of multiple-hypothesis approaches. In the most general case, they can be
computationally very expensive. When one reasons in a 3D space of discrete possible posi-
tions, the number of possible belief states in the single-hypothesis case is limited to the
number of possible positions in the 3D world. Consider this number to be . When one
moves to an arbitrary multiple-hypothesis representation, then the number of possible
belief states is the power set of , which is far larger: . Thus explicit reasoning about
the possible trajectory of the belief state over time quickly becomes computationally unten-
able as the size of the environment grows.

There are, however, specific forms of multiple-hypothesis representations that are some-
what more constrained, thereby avoiding the computational explosion while allowing a
limited type of multiple-hypothesis belief. For example, if one assumes a Gaussian distri-
bution of probability centered at a single position, then the problem of representation and
tracking of belief becomes equivalent to Kalman filtering, a straightforward mathematical
process described below. Alternatively, a highly tessellated map representation combined
with a limit of ten possible positions in the belief state, results in a discrete update cycle that
is, at worst, only ten times more computationally expensive than a single-hypothesis belief
update. And other ways to cope with the complexity problem, still being precise and com-
putationally cheap, are hybrid metric-topological approaches [145, 147] or multi-Gaussian
position estimation [35, 60, 81].

In conclusion, the most critical benefit of the multiple-hypothesis belief state is the abil-
ity to maintain a sense of position while explicitly annotating the robot’s uncertainty about
its own position. This powerful representation has enabled robots with limited sensory
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information to navigate robustly in an array of environments, as we shall see in the case
studies below.

5.5 Map Representation

The problem of representing the environment in which the robot moves is a dual of the
problem of representing the robot’s possible position or positions. Decisions made regard-
ing the environmental representation can have impact on the choices available for robot
position representation. Often the fidelity of the position representation is bounded by the
fidelity of the map.

Three fundamental relationships must be understood when choosing a particular map
representation:

1. The precision of the map must appropriately match the precision with which the robot
needs to achieve its goals.

2. The precision of the map and the type of features represented must match the precision
and data types returned by the robot’s sensors.

3. The complexity of the map representation has direct impact on the computational com-
plexity of reasoning about mapping, localization, and navigation.

In the following sections, we identify and discuss critical design choices in creating a
map representation. Each such choice has great impact on the relationships listed above and
on the resulting robot localization architecture. As we shall see, the choice of possible map
representations is broad. Selecting an appropriate representation requires understanding all
of the trade-offs inherent in that choice as well as understanding the specific context in
which a particular mobile robot implementation must perform localization. In general, the
environmental representation and model can be roughly classified as presented in chapter
4, section 4.3.

5.5.1   Continuous representations
A continuous-valued map is one method for exact decomposition of the environment. The
position of environmental features can be annotated precisely in continuous space. Mobile
robot implementations to date use continuous maps only in 2D representations, as further
dimensionality can result in computational explosion.

A common approach is to combine the exactness of a continuous representation with the
compactness of the closed-world assumption. This means that one assumes that the repre-
sentation will specify all environmental objects in the map, and that any area in the map
that is devoid of objects has no objects in the corresponding portion of the environment.
Thus, the total storage needed in the map is proportional to the density of objects in the
environment, and a sparse environment can be represented by a low-memory map.
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One example of such a representation, shown in figure 5.12, is a 2D representation in
which polygons represent all obstacles in a continuous-valued coordinate space. This is
similar to the method used by Latombe [21, 98] and others to represent environments for
mobile robot path-planning techniques.

In the case of [21, 98], most of the experiments are in fact simulations run exclusively
within the computer’s memory. Therefore, no real effort would have been expended to
attempt to use sets of polygons to describe a real-world environment, such as a park or
office building.

In other work in which real environments must be captured by the maps, one sees a trend
toward selectivity and abstraction. The human map maker tends to capture on the map, for
localization purposes, only objects that can be detected by the robot’s sensors and, further-
more, only a subset of the features of real-world objects.

It should be immediately apparent that geometric maps can capably represent the phys-
ical locations of objects without referring to their texture, color, elasticity, or any other such
secondary features that do not relate directly to position and space. In addition to this level
of simplification, a mobile robot map can further reduce memory usage by capturing only
aspects of object geometry that are immediately relevant to localization. For example, all
objects may be approximated using very simple convex polygons, sacrificing map felicity
for the sake of computational speed.

Figure 5.12
A continuous representation using polygons as environmental obstacles.
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One excellent example involves line extraction. Many indoor mobile robots rely upon
laser rangefinding devices to recover distance readings to nearby objects. Such robots can
automatically extract best-fit lines from the dense range data provided by thousands of
points of laser strikes. Given such a line extraction sensor, an appropriate continuous map-
ping approach is to populate the map with a set of infinite lines. The continuous nature of
the map guarantees that lines can be positioned at arbitrary positions in the plane and at
arbitrary angles. The abstraction of real environmental objects such as walls and intersec-
tions captures only the information in the map representation that matches the type of infor-
mation recovered by the mobile robot’s rangefinding sensor.

Figure 5.13 shows a map of an indoor environment at EPFL using a continuous line rep-
resentation. Note that the only environmental features captured by the map are straight
lines, such as those found at corners and along walls. This represents not only a sampling
of the real world of richer features but also a simplification, for an actual wall may have
texture and relief that is not captured by the mapped line.

The impact of continuous map representations on position representation is primarily
positive. In the case of single-hypothesis position representation, that position may be spec-
ified as any continuous-valued point in the coordinate space, and therefore extremely high
accuracy is possible. In the case of multiple-hypothesis position representation, the contin-
uous map enables two types of multiple position representation.

In one case, the possible robot position may be depicted as a geometric shape in the
hyperplane, such that the robot is known to be within the bounds of that shape. This is
shown in figure 5.29, in which the position of the robot is depicted by an oval bounding
area.

Figure 5.13
Example of a continuous-valued line representation of EPFL. (a) Real map. (b) Representation with
a set of infinite lines.
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Yet, the continuous representation does not disallow representation of position in the
form of a discrete set of possible positions. For instance, in [62] the robot position belief
state is captured by sampling nine continuous-valued positions from within a region near
the robot’s best-known position. This algorithm captures, within a continuous space, a dis-
crete sampling of possible robot positions.

In summary, the key advantage of a continuous map representation is the potential for
high accuracy and expressiveness with respect to the environmental configuration as well
as the robot position within that environment. The danger of a continuous representation is
that the map may be computationally costly. But this danger can be tempered by employing
abstraction and capturing only the most relevant environmental features. Together with the
use of the closed-world assumption, these techniques can enable a continuous-valued map
to be no more costly, and sometimes even less costly, than a standard discrete representa-
tion.

5.5.2   Decomposition strategies
In the section above, we discussed one method of simplification, in which the continuous
map representation contains a set of infinite lines that approximate real-world environmen-
tal lines based on a 2D slice of the world. Basically this transformation from the real world
to the map representation is a filter that removes all nonstraight data and furthermore
extends line segment data into infinite lines that require fewer parameters.

A more dramatic form of simplification is abstraction: a general decomposition and
selection of environmental features. In this section, we explore decomposition as applied
in its more extreme forms to the question of map representation.

Why would one radically decompose the real environment during the design of a map
representation? The immediate disadvantage of decomposition and abstraction is the loss
of fidelity between the map and the real world. Both qualitatively, in terms of overall struc-
ture, and quantitatively, in terms of geometric precision, a highly abstract map does not
compare favorably to a high-fidelity map. 

Despite this disadvantage, decomposition and abstraction may be useful if the abstrac-
tion can be planned carefully so as to capture the relevant, useful features of the world while
discarding all other features. The advantage of this approach is that the map representation
can potentially be minimized. Furthermore, if the decomposition is hierarchical, such as in
a pyramid of recursive abstraction, then reasoning and planning with respect to the map
representation may be computationally far superior to planning in a fully detailed world
model.

A standard, lossless form of opportunistic decomposition is termed exact cell decompo-
sition. This method, introduced by Latombe [21], achieves decomposition by selecting
boundaries between discrete cells based on geometric criticality. 



204 Chapter 5

Figure 5.14 depicts an exact decomposition of a planar workspace populated by polyg-
onal obstacles. The map representation tessellates the space into areas of free space. The
representation can be extremely compact because each such area is actually stored as a
single node, resulting in a total of only eighteen nodes in this example. 

The underlying assumption behind this decomposition is that the particular position of
a robot within each area of free space does not matter. What matters is the robot’s ability
to traverse from each area of free space to the adjacent areas. Therefore, as with other rep-
resentations we will see, the resulting graph captures the adjacency of map locales. If
indeed the assumptions are valid and the robot does not care about its precise position
within a single area, then this can be an effective representation that nonetheless captures
the connectivity of the environment.

Such an exact decomposition is not always appropriate. Exact decomposition is a func-
tion of the particular environment obstacles and free space. If this information is expensive
to collect or even unknown, then such an approach is not feasible. 

An alternative is fixed decomposition, in which the world is tessellated, transforming the
continuous real environment into a discrete approximation for the map. Such a transforma-
tion is demonstrated in figure 5.15, which depicts what happens to obstacle-filled and free
areas during this transformation. The key disadvantage of this approach stems from its inex-
act nature. It is possible for narrow passageways to be lost during such a transformation, as
shown in figure 5.15. Formally, this means that fixed decomposition is sound but not com-
plete. Yet another approach is adaptive cell decomposition, as presented in figure 5.16.

Figure 5.14
Example of exact cell decomposition.
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The concept of fixed decomposition is extremely popular in mobile robotics; it is per-
haps the single most common map representation technique currently utilized. One very
popular version of fixed decomposition is known as the occupancy grid representation
[112]. In an occupancy grid, the environment is represented by a discrete grid, where each
cell is either filled (part of an obstacle) or empty (part of free space). This method is of par-
ticular value when a robot is equipped with range-based sensors because the range values

Figure 5.15
Fixed decomposition of the same space (narrow passage disappears).
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of each sensor, combined with the absolute position of the robot, can be used directly to
update the filled or empty value of each cell.

In the occupancy grid, each cell may have a counter, whereby the value 0 indicates that
the cell has not been “hit” by any ranging measurements and, therefore, it is likely free
space. As the number of ranging strikes increases, the cell’s value is incremented and,
above a certain threshold, the cell is deemed to be an obstacle. The values of cells are com-
monly discounted when a ranging strike travels through the cell, striking a further cell. By
also discounting the values of cells over time, both hysteresis and the possibility of transient
obstacles can be represented using this occupancy grid approach. Figure 5.17 depicts an
occupancy grid representation in which the darkness of each cell is proportional to the value
of its counter. One commercial robot that uses a standard occupancy grid for mapping and
navigation is the Cye robot [163].

There remain two main disadvantages of the occupancy grid approach. First, the size of
the map in robot memory grows with the size of the environment and if a small cell size is
used, this size can quickly become untenable. This occupancy grid approach is not compat-
ible with the closed-world assumption, which enabled continuous representations to have
potentially very small memory requirements in large, sparse environments. In contrast, the

Figure 5.16
Example of adaptive (approximate variable-cell) decomposition of an environment [21]. The rectan-
gle, bounding the free space, is decomposed into four identical rectangles. If the interior of a rectangle
lies completely in free space or in the configuration space obstacle, it is not decomposed further. Oth-
erwise, it is recursively decomposed into four rectangles until some predefined resolution is attained.
The white cells lie outside the obstacles, the black inside, and the gray are part of both regions.
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occupancy grid must have memory set aside for every cell in the matrix. Furthermore, any
fixed decomposition method such as this imposes a geometric grid on the world a priori,
regardless of the environmental details. This can be inappropriate in cases where geometry
is not the most salient feature of the environment.

For these reasons, an alternative, called topological decomposition, has been the subject
of some exploration in mobile robotics. Topological approaches avoid direct measurement
of geometric environmental qualities, instead concentrating on characteristics of the envi-
ronment that are most relevant to the robot for localization.

Formally, a topological representation is a graph that specifies two things: nodes and the
connectivity between those nodes. Insofar as a topological representation is intended for the
use of a mobile robot, nodes are used to denote areas in the world and arcs are used to
denote adjacency of pairs of nodes. When an arc connects two nodes, then the robot can
traverse from one node to the other without requiring traversal of any other intermediary
node.

Adjacency is clearly at the heart of the topological approach, just as adjacency in a cell
decomposition representation maps to geometric adjacency in the real world. However, the
topological approach diverges in that the nodes are not of fixed size or even specifications
of free space. Instead, nodes document an area based on any sensor discriminant such that
the robot can recognize entry and exit of the node. 

Figure 5.18 depicts a topological representation of a set of hallways and offices in an
indoor environment. In this case, the robot is assumed to have an intersection detector, per-
haps using sonar and vision to find intersections between halls and between halls and

Figure 5.17
Example of an occupancy grid map representation (courtesy of S. Thrun [145]).
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rooms. Note that nodes capture geometric space, and arcs in this representation simply rep-
resent connectivity. 

Another example of topological representation is the work of Simhon and Dudek [134],
in which the goal is to create a mobile robot that can capture the most interesting aspects of
an area for human consumption. The nodes in their representation are visually striking
locales rather than route intersections.

In order to navigate using a topological map robustly, a robot must satisfy two con-
straints. First, it must have a means for detecting its current position in terms of the nodes
of the topological graph. Second, it must have a means for traveling between nodes using
robot motion. The node sizes and particular dimensions must be optimized to match the
sensory discrimination of the mobile robot hardware. This ability to “tune” the representa-
tion to the robot’s particular sensors can be an important advantage of the topological
approach. However, as the map representation drifts further away from true geometry, the
expressiveness of the representation for accurately and precisely describing a robot position
is lost. Therein lies the compromise between the discrete cell-based map representations
and the topological representations. Interestingly, the continuous map representation has

Figure 5.18
A topological representation of an indoor office area.
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the potential to be both compact like a topological representation and precise as with all
direct geometric representations. 

Yet, a chief motivation of the topological approach is that the environment may contain
important nongeometric features – features that have no ranging relevance but are useful
for localization. In chapter 4 we described such whole-image vision-based features.

In contrast to these whole-image feature extractors, often spatially localized landmarks
are artificially placed in an environment to impose a particular visual-topological connec-
tivity upon the environment. In effect, the artificial landmark can impose artificial struc-
ture. Examples of working systems operating with this landmark-based strategy have also
demonstrated success. Latombe’s landmark-based navigation research [99] has been
implemented on real-world indoor mobile robots that employ paper landmarks attached to
the ceiling as the locally observable features. Chips, the museum robot, is another robot that
uses man-made landmarks to obviate the localization problem. In this case, a bright pink
square serves as a landmark with dimensions and color signature that would be hard to acci-
dentally reproduce in a museum environment [118]. One such museum landmark is shown
in figure 5.19.

In summary, range is clearly not the only measurable and useful environmental value for
a mobile robot. This is particularly true with the advent of color vision, as well as laser

Figure 5.19
An artificial landmark used by Chips during autonomous docking.
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rangefinding, which provides reflectance information in addition to range information.
Choosing a map representation for a particular mobile robot requires, first, understanding
the sensors available on the mobile robot, and, second, understanding the mobile robot’s
functional requirements (e.g., required goal precision and accuracy).

5.5.3   State of the art: current challenges in map representation
The sections above describe major design decisions in regard to map representation
choices. There are, however, fundamental real-world features that mobile robot map repre-
sentations do not yet represent well. These continue to be the subject of open research, and
several such challenges are described below.

The real world is dynamic. As mobile robots come to inhabit the same spaces as humans,
they will encounter moving people, cars, strollers, and the transient obstacles placed and
moved by humans as they go about their activities. This is particularly true when one con-
siders the home environment with which domestic robots will someday need to contend.

The map representations described above do not, in general, have explicit facilities for
identifying and distinguishing between permanent obstacles (e.g., walls, doorways, etc.)
and transient obstacles (e.g., humans, shipping packages, etc.). The current state of the art
in terms of mobile robot sensors is partly to blame for this shortcoming. Although vision
research is rapidly advancing, robust sensors that discriminate between moving animals
and static structures from a moving reference frame are not yet available. Furthermore, esti-
mating the motion vector of transient objects remains a research problem.

Usually, the assumption behind the above map representations is that all objects on the
map are effectively static. Partial success can be achieved by discounting mapped objects
over time. For example, occupancy grid techniques can be more robust to dynamic settings
by introducing temporal discounting, effectively treating transient obstacles as noise. The
more challenging process of map creation is particularly fragile to environmental dynam-
ics; most mapping techniques generally require that the environment be free of moving
objects during the mapping process. One exception to this limitation involves topological
representations. Because precise geometry is not important, transient objects have little
effect on the mapping or localization process, subject to the critical constraint that the tran-
sient objects must not change the topological connectivity of the environment. Still, neither
the occupancy grid representation nor a topological approach is actively recognizing and
representing transient objects as distinct from both sensor error and permanent map fea-
tures.

As vision sensing provides more robust and more informative content regarding the
transience and motion details of objects in the world, mobile roboticists will in time pro-
pose representations that make use of that information. A classic example involves occlu-
sion by human crowds. Museum tour guide robots generally suffer from an extreme amount
of occlusion. If the robot’s sensing suite is located along the robot’s body, then the robot is
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effectively blind when a group of human visitors completely surround the robot. This is
because its map contains only environmental features that are, at that point, fully hidden
from the robot’s sensors by the wall of people. In the best case, the robot should recognize
its occlusion and make no effort to localize using these invalid sensor readings. In the worst
case, the robot will localize with the fully occluded data, and will update its location incor-
rectly. A vision sensor that can discriminate the local conditions of the robot (e.g,. we are
surrounded by people) can help eliminate this error mode.

A second open challenge in mobile robot localization involves the traversal of open
spaces. Existing localization techniques generally depend on local measures such as range,
thereby demanding environments that are somewhat densely filled with objects that the
sensors can detect and measure. Wide-open spaces such as parking lots, fields of grass, and
indoor atriums such as those found in convention centers pose a difficulty for such systems
because of their relative sparseness. Indeed, when populated with humans, the challenge is
exacerbated because any mapped objects are almost certain to be occluded from view by
the people. 

Once again, more recent technologies provide some hope of overcoming these limita-
tions. Both vision and state-of-the-art laser rangefinding devices offer outdoor performance
with ranges of up to a hundred meters and more. Of course, GPS performs even better. Such
long-range sensing may be required for robots to localize using distant features. 

This trend teases out a hidden assumption underlying most topological map representa-
tions. Usually, topological representations make assumptions regarding spatial locality: a
node contains objects and features that are themselves within that node. The process of map
creation thus involves making nodes that are, in their own self-contained way, recognizable
by virtue of the objects contained within the node. Therefore, in an indoor environment,
each room can be a separate node, and this is reasonable because each room will have a
layout and a set of belongings that are unique to that room.

However, consider the outdoor world of a wide-open park. Where should a single node
end and the next node begin? The answer is unclear because objects that are far away from
the current node, or position, can yield information for the localization process. For exam-
ple, the hump of a hill at the horizon, the position of a river in the valley, and the trajectory
of the sun all are nonlocal features that have great bearing on one’s ability to infer current
position. The spatial locality assumption is violated and, instead, replaced by a visibility
criterion: the node or cell may need a mechanism for representing objects that are measur-
able and visible from that cell. Once again, as sensors improve and, in this case, as outdoor
locomotion mechanisms improve, there will be greater urgency to solve problems associ-
ated with localization in wide-open settings, with and without GPS-type global localization
sensors.

We end this section with one final open challenge that represents one of the fundamental
academic research questions of robotics: sensor fusion. A variety of measurement types are
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possible using off-the-shelf robot sensors, including heat, range, acoustic and light-based
reflectivity, color, texture, friction, and so on. Sensor fusion is a research topic closely
related to map representation. Just as a map must embody an environment in sufficient
detail for a robot to perform localization and reasoning, sensor fusion demands a represen-
tation of the world that is sufficiently general and expressive that a variety of sensor types
can have their data correlated appropriately, strengthening the resulting percepts well
beyond that of any individual sensor’s readings. 

Perhaps the only general implementation of sensor fusion to date is that of neural net-
work classifier. Using this technique, any number and any type of sensor values may be
jointly combined in a network that will use whatever means necessary to optimize its clas-
sification accuracy. For the mobile robot that must use a human-readable internal map rep-
resentation, no equally general sensor fusion scheme has yet been born. It is reasonable to
expect that, when the sensor fusion problem is solved, integration of a large number of dis-
parate sensor types may easily result in sufficient discriminatory power for robots to
achieve real-world navigation, even in wide-open and dynamic circumstances such as a
public square filled with people. 

5.6 Probabilistic Map-Based Localization

5.6.1   Introduction
As stated earlier, multiple-hypothesis position representation is advantageous because the
robot can explicitly track its own beliefs regarding its possible positions in the environment.
Ideally, the robot’s belief state will change, over time, as is consistent with its motor outputs
and perceptual inputs. One geometric approach to multiple-hypothesis representation, men-
tioned earlier, involves identifying the possible positions of the robot by specifying a poly-
gon in the environmental representation [98]. This method does not provide any indication
of the relative chances between various possible robot positions.

Probabilistic techniques differ from this because they explicitly identify probabilities
with the possible robot positions, and for this reason these methods have been the focus of
recent research. In the following sections we present two classes of probabilistic localiza-
tion. The first class, Markov localization, uses an explicitly specified probability distribu-
tion across all possible robot positions. The second method, Kalman filter localization, uses
a Gaussian probability density representation of robot position and scan matching for local-
ization. Unlike Markov localization, Kalman filter localization does not independently con-
sider each possible pose in the robot’s configuration space. Interestingly, the Kalman filter
localization process results from the Markov localization axioms if the robot’s position
uncertainty is assumed to have a Gaussian form [3, pp. 43-44].

Before discussing each method in detail, we present the general robot localization prob-
lem and solution strategy. Consider a mobile robot moving in a known environment. As it
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starts to move, say from a precisely known location, it can keep track of its motion using
odometry. Due to odometry uncertainty, after some movement the robot will become very
uncertain about its position (see section 5.2.4). To keep position uncertainty from growing
unbounded, the robot must localize itself in relation to its environment map. To localize,
the robot might use its on-board sensors (ultrasonic, range sensor, vision) to make observa-
tions of its environment. The information provided by the robot’s odometry, plus the infor-
mation provided by such exteroceptive observations, can be combined to enable the robot
to localize as well as possible with respect to its map. The processes of updating based on
proprioceptive sensor values and exteroceptive sensor values are often separated logically,
leading to a general two-step process for robot position update.

Action update represents the application of some action model  to the mobile robot’s
proprioceptive encoder measurements  and prior belief state to yield a new belief
state representing the robot’s belief about its current position. Note that throughout this
chapter we assume that the robot’s proprioceptive encoder measurements are used as the
best possible measure of its actions over time. If, for instance, a differential-drive robot had
motors without encoders connected to its wheels and employed open-loop control, then
instead of encoder measurements the robot’s highly uncertain estimates of wheel spin
would need to be incorporated. We ignore such cases and therefore have a simple formula:

 .  (5.16)

Perception update represents the application of some perception model  to the
mobile robot’s exteroceptive sensor inputs  and updated belief state  to yield a refined
belief state representing the robot’s current position:

  (5.17)

The perception model See and sometimes the action model  are abstract functions
of both the map and the robot’s physical configuration (e.g., sensors and their positions,
kinematics, etc.).

In general, the action update process contributes uncertainty to the robot’s belief about
position: encoders have error and therefore motion is somewhat nondeterministic. By con-
trast, perception update generally refines the belief state. Sensor measurements, when com-
pared to the robot’s environmental model, tend to provide clues regarding the robot’s
possible position.

In the case of Markov localization, the robot’s belief state is usually represented as sep-
arate probability assignments for every possible robot pose in its map. The action update
and perception update processes must update the probability of every cell in this case.
Kalman filter localization represents the robot’s belief state using a single, well-defined
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Gaussian probability density function, and thus retains just a  and  parameterization of
the robot’s belief about position with respect to the map. Updating the parameters of the
Gaussian distribution is all that is required. This fundamental difference in the representa-
tion of belief state leads to the following advantages and disadvantages of the two methods,
as presented in [73]:

• Markov localization allows for localization starting from any unknown position and can
thus recover from ambiguous situations because the robot can track multiple, completely
disparate possible positions. However, to update the probability of all positions within
the whole state space at any time requires a discrete representation of the space, such as
a geometric grid or a topological graph (see section 5.5.2). The required memory and
computational power can thus limit precision and map size. 

• Kalman filter localization tracks the robot from an initially known position and is inher-
ently both precise and efficient. In particular, Kalman filter localization can be used in
continuous world representations. However, if the uncertainty of the robot becomes too
large (e.g., due to a robot collision with an object) and thus not truly unimodal, the
Kalman filter can fail to capture the multitude of possible robot positions and can
become irrevocably lost.

In recent research projects improvements are achieved or proposed by either only updat-
ing the state space of interest within the Markov approach [49] or by tracking multiple
hypotheses with Kalman filters [35], or by combining both methods to create a hybrid
localization system [73, 147]. In the next two sections we will each approach in detail.

5.6.2   Markov localization 
Markov localization tracks the robot’s belief state using an arbitrary probability density
function to represent the robot’s position (see also [50, 88, 116, 119]). In practice, all
known Markov localization systems implement this generic belief representation by first
tessellating the robot configuration space into a finite, discrete number of possible robot
poses in the map. In actual applications, the number of possible poses can range from sev-
eral hundred to millions of positions.

Given such a generic conception of robot position, a powerful update mechanism is
required that can compute the belief state that results when new information (e.g., encoder
values and sensor values) is incorporated into a prior belief state with arbitrary probability
density. The solution is born out of probability theory, and so the next section describes the
foundations of probability theory that apply to this problem, notably the Bayes formula.
Then, two subsequent sections provide case studies, one robot implementing a simple fea-
ture-driven topological representation of the environment [88, 116, 119] and the other
using a geometric grid-based map [49, 50].

µ σ
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5.6.2.1   Introduction: applying probability theory to robot localization
Given a discrete representation of robot positions, in order to express a belief state we wish
to assign to each possible robot position a probability that the robot is indeed at that posi-
tion. From probability theory we use the term  to denote the probability that  is true.
This is also called the prior probability of  because it measures the probability that  is
true independent of any additional knowledge we may have. For example we can use

 to denote the prior probability that the robot r is at position  at time .
In practice, we wish to compute the probability of each individual robot position given

the encoder and sensor evidence the robot has collected. In probability theory, we use the
term  to denote the conditional probability of  given that we know . For exam-
ple, we use  to denote the probability that the robot is at position  given that
the robot’s sensor inputs . 

The question is, how can a term such as  be simplified to its constituent parts
so that it can be computed? The answer lies in the product rule, which states

 (5.18)

Equation (5.18) is intuitively straightforward, as the probability of both  and  being
true is being related to  being true and the other being conditionally true. But you should
be able to convince yourself that the alternate equation is equally correct:

 (5.19)

Using equations (5.18) and (5.19) together, we can derive the Bayes formula for com-
puting :

 (5.20)

We use the Bayes rule to compute the robot’s new belief state as a function of its sensory
inputs and its former belief state. But to do this properly, we must recall the basic goal of
the Markov localization approach: a discrete set of possible robot positions  are repre-
sented. The belief state of the robot must assign a probability  for each location 
in .

The  function described in equation (5.17) expresses a mapping from a belief state
and sensor input to a refined belief state. To do this, we must update the probability asso-
ciated with each position  in , and we can do this by directly applying the Bayes formula
to every such . In denoting this, we will stop representing the temporal index  for sim-
plicity and will further use  to mean :
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 (5.21)

The value of  is key to equation (5.21), and this probability of a sensor input at
each robot position must be computed using some model. An obvious strategy would be to
consult the robot’s map, identifying the probability of particular sensor readings with each
possible map position, given knowledge about the robot’s sensor geometry and the mapped
environment. The value of  is easy to recover in this case. It is simply the probability

 associated with the belief state before the perceptual update process. Finally, note
that the denominator  does not depend upon ; that is, as we apply equation (5.21) to
all positions  in , the denominator never varies. Because it is effectively constant, in
practice this denominator is usually dropped and, at the end of the perception update step,
all probabilities in the belief state are re-normalized to sum at 1.0.

Now consider the Act function of equation (5.16). Act maps a former belief state and
encoder measurement (i.e., robot action) to a new belief state. In order to compute the prob-
ability of position  in the new belief state, one must integrate over all the possible ways in
which the robot may have reached  according to the potential positions expressed in the
former belief state. This is subtle but fundamentally important. The same location  can be
reached from multiple source locations with the same encoder measurement o because the
encoder measurement is uncertain. Temporal indices are required in this update equation:

 (5.22)

Thus, the total probability for a specific position  is built up from the individual con-
tributions from every location  in the former belief state given encoder measurement . 

Equations (5.21) and (5.22) form the basis of Markov localization, and they incorporate
the Markov assumption. Formally, this means that their output is a function only of the
robot’s previous state and its most recent actions (odometry) and perception. In a general,
non-Markovian situation, the state of a system depends upon all of its history. After all, the
values of a robot’s sensors at time t do not really depend only on its position at time . They
depend to some degree on the trajectory of the robot over time; indeed, on the entire history
of the robot. For example, the robot could have experienced a serious collision recently that
has biased the sensor’s behavior. By the same token, the position of the robot at time  does
not really depend only on its position at time  and its odometric measurements. Due
to its history of motion, one wheel may have worn more than the other, causing a left-turn-
ing bias over time that affects its current position.

So the Markov assumption is, of course, not a valid assumption. However the Markov
assumption greatly simplifies tracking, reasoning, and planning and so it is an approxima-
tion that continues to be extremely popular in mobile robotics.
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5.6.2.2   Case study 1: Markov localization using a topological map
A straightforward application of Markov localization is possible when the robot’s environ-
ment representation already provides an appropriate decomposition. This is the case when
the environmental representation is purely topological.

Consider a contest in which each robot is to receive a topological description of the envi-
ronment. The description would include only the connectivity of hallways and rooms, with
no mention of geometric distance. In addition, this supplied map would be imperfect, con-
taining several false arcs (e.g., a closed door). Such was the case for the 1994 American
Association for Artificial Intelligence (AAAI) National Robot Contest, at which each
robot’s mission was to use the supplied map and its own sensors to navigate from a chosen
starting position to a target room.

Dervish, the winner of this contest, employed probabilistic Markov localization and
used a multiple-hypothesis belief state over a topological environmental representation. We
now describe Dervish as an example of a robot with a discrete, topological representation
and a probabilistic localization algorithm.

Dervish, shown in figure 5.20, includes a sonar arrangement custom-designed for the
1994 AAAI National Robot Contest. The environment in this contest consisted of a recti-

Figure 5.20
Dervish exploring its environment.
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linear indoor office space filled with real office furniture as obstacles. Traditional sonars
were arranged radially around the robot in a ring. Robots with such sensor configurations
are subject to both tripping over short objects below the ring and to decapitation by tall
objects (such as ledges, shelves, and tables) that are above the ring.

Dervish’s answer to this challenge was to arrange one pair of sonars diagonally upward
to detect ledges and other overhangs. In addition, the diagonal sonar pair also proved to
ably detect tables, enabling the robot to avoid wandering underneath tall tables. The
remaining sonars were clustered in sets of sonars, such that each individual transducer in
the set would be at a slightly varied angle to minimize specularity. Finally, two sonars near
the robot’s base were positioned to detect low obstacles, such as paper cups, on the floor.

We have already noted that the representation provided by the contest organizers was
purely topological, noting the connectivity of hallways and rooms in the office environ-
ment. Thus, it would be appropriate to design Dervish’s perceptual system to detect match-
ing perceptual events: the detection and passage of connections between hallways and
offices.

This abstract perceptual system was implemented by viewing the trajectory of sonar
strikes to the left and right sides of Dervish over time. Interestingly, this perceptual system
would use time alone and no concept of encoder value to trigger perceptual events. Thus,
for instance, when the robot detects a 7 to 17 cm indentation in the width of the hallway for
more than 1 second continuously, a closed door sensory event is triggered. If the sonar
strikes jump well beyond 17 cm for more than 1 second, an open door sensory event trig-
gers.

To reduce coherent reflection sensor noise (see section 4.1.6) associated with Dervish’s
sonars, the robot would track its angle relative to the hallway centerline and completely
suppress sensor events when its angle to the hallway exceeded 9 degrees. Interestingly, this
would result in a conservative perceptual system that frequently misses features, particu-
larly when the hallway is crowded with obstacles that Dervish must negotiate. Once again,
the conservative nature of the perceptual system, and in particular its tendency to issue false
negatives, would point to a probabilistic solution to the localization problem so that a com-
plete trajectory of perceptual inputs could be considered.

Dervish’s environmental representation was a discrete topological map, identical in
abstraction and information to the map provided by the contest organizers. Figure 5.21
depicts a geometric representation of a typical office environment overlaid with the topo-
logical map for the same office environment. Recall that for a topological representation
the key decision involves assignment of nodes and connectivity between nodes (see section
5.5.2). As shown on the left in figure 5.21 Dervish uses a topology in which node bound-
aries are marked primarily by doorways (and hallways and foyers). The topological graph
shown on the right depicts the information captured in the example shown. 
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Note that in this particular topological model arcs are zero-length while nodes have spa-
tial expansiveness and together cover the entire space. This particular topological represen-
tation is particularly apt for Dervish given its task of navigating through hallways into a
specific room and its perceptual capability of recognizing discontinuities in hallway walls.

In order to represent a specific belief state, Dervish associated with each topological
node n a probability that the robot is at a physical position within the boundaries of :

. As will become clear below, the probabilistic update used by Dervish was
approximate, therefore technically one should refer to the resulting values as likelihoods
rather than probabilities. 

The perception update process for Dervish functions precisely as in equation (5.21). Per-
ceptual events are generated asynchronously, each time the feature extractor is able to rec-
ognize a large scale feature (e.g., doorway, intersection) based on recent ultrasonic values.
Each perceptual event consists of a percept-pair (a feature on one side of the robot or two
features on both sides).

Given a specific percept-pair , equation (5.21) enables the likelihood of each possible
position  to be updated using the formula: 

Table 5.1 
Dervish’s certainty matrix.

Wall Closed
door

Open
door

Open
hallway

Foyer

Nothing detected 0.70 0.40 0.05 0.001 0.30

Closed door detected 0.30 0.60 0 0 0.05

Open door detected 0 0 0.90 0.10 0.15

Open hallway detected 0 0 0.001 0.90 0.50

Figure 5.21
A geometric office environment (left) and its topological analog (right).
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 (5.23)

The value of  is already available from the current belief state of Dervish, and so
the challenge lies in computing . The key simplification for Dervish is based upon
the realization that, because the feature extraction system only extracts four total features
and because a node contains (on a single side) one of five total features, every possible com-
bination of node type and extracted feature can be represented in a 4 x 5 table. 

Dervish’s certainty matrix (show in table 5.1) is just this lookup table. Dervish makes
the simplifying assumption that the performance of the feature detector (i.e., the probability
that it is correct) is only a function of the feature extracted and the actual feature in the node.
With this assumption in hand, we can populate the certainty matrix with confidence esti-
mates for each possible pairing of perception and node type. For each of the five world fea-
tures that the robot can encounter (wall, closed door, open door, open hallway-and foyer)
this matrix assigns a likelihood for each of the three one-sided percepts that the sensory
system can issue. In addition, this matrix assigns a likelihood that the sensory system will
fail to issue a perceptual event altogether (nothing detected).

For example, using the specific values in table 5.1, if Dervish is next to an open hallway,
the likelihood of mistakenly recognizing it as an open door is 0.10. This means that for any
node n that is of type open hallway and for the sensor value =open door, .
Together with a specific topological map, the certainty matrix enables straightforward
computation of  during the perception update process.

For Dervish’s particular sensory suite and for any specific environment it intends to nav-
igate, humans generate a specific certainty matrix that loosely represents its perceptual con-
fidence, along with a global measure for the probability that any given door will be closed
versus opened in the real world.

Recall that Dervish has no encoders and that perceptual events are triggered asynchro-
nously by the feature extraction processes. Therefore, Dervish has no action update step as
depicted by equation (5.22). When the robot does detect a perceptual event, multiple per-
ception update steps will need to be performed to update the likelihood of every possible
robot position given Dervish’s former belief state. This is because there is a chance that the
robot has traveled multiple topological nodes since its previous perceptual event (i.e., false-
negative errors). Formally, the perception update formula for Dervish is in reality a combi-
nation of the general form of action update and perception update. The likelihood of posi-
tion  given perceptual event i is calculated as in equation (5.22):

 (5.24)

The value of  denotes the likelihood of Dervish being at position  as repre-
sented by Dervish’s former belief state. The temporal subscript  is used in lieu of 
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because for each possible position  the discrete topological distance from  to  can
vary depending on the specific topological map. The calculation of  is per-
formed by multiplying the probability of generating perceptual event  at position  by the
probability of having failed to generate perceptual events at all nodes between  and :

 (5.25)

For example (figure 5.22), suppose that the robot has only two nonzero nodes in its
belief state, {1-2, 2-3}, with likelihoods associated with each possible position:

 and . For simplicity assume the robot is facing east with
certainty. Note that the likelihoods for nodes 1-2 and 2-3 do not sum to 1.0. These values
are not formal probabilities, and so computational effort is minimized in Dervish by avoid-
ing normalization altogether. Now suppose that a perceptual event is generated: the robot
detects an open hallway on its left and an open door on its right simultaneously.

State 2-3 will progress potentially to states 3, 3-4, and 4. But states 3 and 3-4 can be
eliminated because the likelihood of detecting an open door when there is only wall is zero.
The likelihood of reaching state 4 is the product of the initial likelihood for state 2-3, 0.2,
the likelihood of not detecting anything at node 3, (a), and the likelihood of detecting a hall-
way on the left and a door on the right at node 4, (b). Note that we assume the likelihood of
detecting nothing at node 3-4 is 1.0 (a simplifying approximation).

(a) occurs only if Dervish fails to detect the door on its left at node 3 (either closed or
open), , and correctly detects nothing on its right, 0.7.

(b) occurs if Dervish correctly identifies the open hallway on its left at node 4, 0.90, and
mistakes the right hallway for an open door, 0.10.

The final formula, , yields a likelihood of
0.003 for state 4. This is a partial result for  following from the prior belief state node
2-3.
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Figure 5.22
A realistic indoor topological environment.
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Turning to the other node in Dervish’s prior belief state, 1-2 will potentially progress to
states 2, 2-3, 3, 3-4, and 4. Again, states 2-3, 3, and 3-4 can all be eliminated since the like-
lihood of detecting an open door when a wall is present is zero. The likelihood of state 2 is
the product of the prior likelihood for state 1-2, (1.0), the likelihood of detecting the door
on the right as an open door, , and the likelihood of correctly detecting
an open hallway to the left, 0.9. The likelihood for being at state 2 is then

. In addition, 1-2 progresses to state 4 with a certainty factor of
, which is added to the certainty factor above to bring the total for state 4 to

0.00328. Dervish would therefore track the new belief state to be {2, 4}, assigning a very
high likelihood to position 2 and a low likelihood to position 4.

Empirically, Dervish’s map representation and localization system have proved to be
sufficient for navigation of four indoor office environments: the artificial office environ-
ment created explicitly for the 1994 National Conference on Artificial Intelligence; and the
psychology, history, and computer science departments at Stanford University. All of these
experiments were run while providing Dervish with no notion of the distance between adja-
cent nodes in its topological map. It is a demonstration of the power of probabilistic local-
ization that, in spite of the tremendous lack of action and encoder information, the robot is
able to navigate several real-world office buildings successfully.

One open question remains with respect to Dervish’s localization system. Dervish was
not just a localizer but also a navigator. As with all multiple hypothesis systems, one must
ask the question, how does the robot decide how to move, given that it has multiple possible
robot positions in its representation? The technique employed by Dervish is a common
technique in the mobile robotics field: plan the robot’s actions by assuming that the robot’s
actual position is its most likely node in the belief state. Generally, the most likely position
is a good measure of the robot’s actual world position. However, this technique has short-
comings when the highest and second highest most likely positions have similar values. In
the case of Dervish, it nonetheless goes with the highest-likelihood position at all times,
save at one critical juncture. The robot’s goal is to enter a target room and remain there.
Therefore, from the point of view of its goal, it is critical that Dervish finish navigating only
when the robot has strong confidence in being at the correct final location. In this particular
case, Dervish’s execution module refuses to enter a room if the gap between the most likely
position and the second likeliest position is below a preset threshold. In such a case, Der-
vish will actively plan a path that causes it to move further down the hallway in an attempt
to collect more sensor data and thereby increase the relative likelihood of one position in
the multiple-hypothesis belief state. 

Although computationally unattractive, one can go further, imagining a planning system
for robots such as Dervish for which one specifies a goal belief state rather than a goal posi-
tion. The robot can then reason and plan in order to achieve a goal confidence level, thus
explicitly taking into account not only robot position but also the measured likelihood of
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1.0 0.4 0.9 0.9⋅ ⋅ ⋅ 0.3=
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each position. An example of just such a procedure is the sensory uncertainty field of
Latombe [141], in which the robot must find a trajectory that reaches its goal while maxi-
mizing its localization confidence on-line.

5.6.2.3   Case study 2: Markov localization using a grid map
The major weakness of a purely topological decomposition of the environment is the reso-
lution limitation imposed by such a granular representation. The position of the robot is
usually limited to the resolution of a single node in such cases, and this may be undesirable
for certain applications.

In this case study, we examine the work of Burgard and colleagues [49, 50] in which far
more precise navigation is made possible using a grid-based representation while still
employing the Markov localization technique.

The robot used by this research, Rhino, is an RWI B24 robot with twenty-four sonars
and two Sick laser rangefinders. Clearly, at the sensory level this robot accumulates greater
and more accurate range data than is possible with the handful of sonar sensors mounted on
Dervish. In order to make maximal use of these fine-grained sensory data, Rhino uses a 2D
geometric environmental representation of free and occupied space. This metric map is tes-
sellated regularly into a fixed decomposition grid with each cell occupying 4 to 64 cm in
various instantiations. 

Like Dervish, Rhino uses multiple-hypothesis belief representation. In line with the far
improved resolution of the environmental representation, the belief state representation of
Rhino consists of a  3D array representing the probability of  possible
robot positions (see figure 5.23). The resolution of the array is . Note
that unlike Dervish, which assumes its orientation is approximate and known, Rhino
explicitly represents fine-grained alternative orientations, and so its belief state formally
represents three degrees of freedom. As we have stated before, the resolution of the belief
state representation must match the environmental representation in order for the overall
system to function well.

Whereas Dervish made use of only perceptual events, ignoring encoder inputs and there-
fore metric distance altogether, Rhino uses the complete Markov probabilistic localization
approach summarized in section 5.6.2.1, including both an explicit action update phase and
a perception update phase at every cycle.

The discrete Markov chain version of action update is performed because of the tessel-
lated representation of position. Given encoder measurements o at time , each updated
position probability in the belief state is expressed as a sum over previous possible positions
and the motion model:

 (5.26)
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Note that equation (5.26) is simply a discrete version of equation (5.22). The specific
motion model used by Rhino represents the result of motion as a Gaussian that is bounded
(i.e., the tails of the distribution are finite). Rhino’s kinematic configuration is a three-
wheel synchro-drive rather than a differential-drive robot. Nevertheless, the error ellipses
depicted in figures 5.4 and 5.5 are similar to the Gaussian bounds that result from Rhino’s
motion model.

The perception model follows the Bayes formula precisely, as in equation (5.21). Given
a range perception  the probability of the robot being at each location  is updated as fol-
lows:

 (5.27)

Note that a denominator is used by Rhino, although the denominator is constant for vary-
ing values of . This denominator acts as a normalizer to ensure that the probability mea-
sures in the belief state continue to sum to 1. 

The critical challenge is, of course, the calculation of . In the case of Dervish, the
number of possible values for  and  were so small that a simple table could suffice. How-
ever, with the fine-grained metric representation of Rhino, the number of possible sensor
readings and environmental geometric contexts is extremely large. Thus, Rhino computes

Figure 5.23
The belief state representation 3D array used by Rhino (courtesy of W. Burgard and S. Thrun). 
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 directly using a model of the robot’s sensor behavior, its position , and the local
environmental metric map around .

The sensor model must calculate the probability of a specific perceptual measurement
given that its likelihood is justified by known errors of the sonar or laser rangefinder sen-
sors. Three key assumptions are used to construct this sensor model:

1. If an object in the metric map is detected by a range sensor, the measurement error can
be described with a distribution that has a mean at the correct reading.

2. There should always be a nonzero chance that a range sensor will read any measurement
value, even if this measurement disagrees sharply with the environmental geometry.

3. In contrast to the generic error described in (2), there is a specific failure mode in ranging
sensors whereby the signal is absorbed or coherently reflected, causing the sensor’s
range measurement to be maximal. Therefore, there is a local peak in the probability
density distribution at the maximal reading of a range sensor.

By validating these assumptions using empirical sonar trials in multiple environments,
the research group has delivered to Rhino a conservative and powerful sensor model for its
particular sensors.

Figure 5.24 provides a simple 1D example of the grid-based Markov localization algo-
rithm. The robot begins with a flat probability density function for its possible location. In
other words, it initially has no bias regarding position. As the robot encounters first one
door and then a second door, the probability density function over possible positions
becomes first multimodal and finally unimodal and sharply defined. The ability of a
Markov localization system to localize the robot from an initially lost belief state is its key
distinguishing feature.

The resulting robot localization system has been part of a navigation system that has
demonstrated great success both at the University of Bonn (Germany) and at a public
museum in Bonn. This is a challenging application because of the dynamic nature of the
environment, as the robot’s sensors are frequently subject to occlusion due to humans gath-
ering around the robot. Rhino’s ability to function well in this setting is a demonstration of
the power of the Markov localization approach.

Reducing computational complexity: randomized sampling. A great many steps are
taken in real-world implementations such as Rhino in order to effect computational gains.
These are valuable because, with an exact cell decomposition representation and use of raw
sensor values rather than abstraction to features, such a robot has a massive computational
effort associated with each perceptual update.

One class of techniques deserves mention because it can significantly reduce the com-
putational overhead of techniques that employ fixed-cell decomposition representations.

p i l( ) l
l
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The basic idea, which we call randomized sampling, is known alternatively as particle filter
algorithms, condensation algorithms, and Monte Carlo algorithms [68, 144].

Irrespective of the specific technique, the basic algorithm is the same in all these cases.
Instead of representing every possible robot position by representing the complete and cor-
rect belief state, an approximate belief state is constructed by representing only a subset of
the complete set of possible locations that should be considered. 

For example, consider a robot with a complete belief state of 10,000 possible locations
at time t. Instead of tracking and updating all 10,000 possible locations based on a new
sensor measurement, the robot can select only 10% of the stored locations and update only
those locations. By weighting this sampling process with the probability values of the loca-
tions, one can bias the system to generate more samples at local peaks in the probability

Figure 5.24
Improving belief state by moving.
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density function. So the resulting 1000 locations will be concentrated primarily at the high-
est probability locations. This biasing is desirable, but only to a point.

We also wish to ensure that some less likely locations are tracked, as otherwise, if the
robot does indeed receive unlikely sensor measurements, it will fail to localize. This ran-
domization of the sampling process can be performed by adding additional samples from a
flat distribution, for example. Further enhancements of these randomized methods enable
the number of statistical samples to be varied on the fly, based, for instance, on the ongoing
localization confidence of the system. This further reduces the number of samples required
on average while guaranteeing that a large number of samples will be used when necessary
[68].

These sampling techniques have resulted in robots that function indistinguishably as
compared to their full belief state set ancestors, yet use computationally a fraction of the
resources. Of course, such sampling has a penalty: completeness. The probabilistically
complete nature of Markov localization is violated by these sampling approaches because
the robot is failing to update all the nonzero probability locations, and thus there is a danger
that the robot, due to an unlikely but correct sensor reading, could become truly lost. Of
course, recovery from a lost state is feasible just as with all Markov localization techniques.

5.6.3   Kalman filter localization
The Markov localization model can represent any probability density function over robot
position. This approach is very general but, due to its generality, inefficient. Consider
instead the key demands on a robot localization system. One can argue that it is not the
exact replication of a probability density curve but the sensor fusion problem that is key to
robust localization. Robots usually include a large number of heterogeneous sensors, each
providing clues as to robot position and, critically, each suffering from its own failure
modes. Optimal localization should take into account the information provided by all of
these sensors. In this section we describe a powerful technique for achieving this sensor
fusion, called the Kalman filter. This mechanism is in fact more efficient than Markov
localization because of key simplifications when representing the probability density func-
tion of the robot’s belief state and even its individual sensor readings, as described below.
But the benefit of this simplification is a resulting optimal recursive data-processing algo-
rithm. It incorporates all information, regardless of precision, to estimate the current value
of the variable of interest (i.e., the robot’s position). A general introduction to Kalman fil-
ters can be found in [106] and a more detailed treatment is presented in [3].

Figure 5.25 depicts the general scheme of Kalman filter estimation, where a system has
a control signal and system error sources as inputs. A measuring device enables measuring
some system states with errors. The Kalman filter is a mathematical mechanism for produc-
ing an optimal estimate of the system state based on the knowledge of the system and the
measuring device, the description of the system noise and measurement errors and the
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uncertainty in the dynamics models. Thus the Kalman filter fuses sensor signals and system
knowledge in an optimal way. Optimality depends on the criteria chosen to evaluate the
performance and on the assumptions. Within the Kalman filter theory the system is
assumed to be linear and white with Gaussian noise. As we have discussed earlier, the
assumption of Gaussian error is invalid for our mobile robot applications but, nevertheless,
the results are extremely useful. In other engineering disciplines, the Gaussian error
assumption has in some cases been shown to be quite accurate [106]. 

We begin with a section that introduces Kalman filter theory, then we present an appli-
cation of that theory to the problem of mobile robot localization (5.6.3.2). Finally, section
5.6.3.2 presents a case study of a mobile robot that navigates indoor spaces by virtue of
Kalman filter localization.

5.6.3.1   Introduction to Kalman filter theory
The basic Kalman filter method allows multiple measurements to be incorporated opti-
mally into a single estimate of state. In demonstrating this, first we make the simplifying
assumption that the state does not change (e.g., the robot does not move) between the acqui-
sition of the first and second measurement. After presenting this static case, we can intro-
duce dynamic prediction readily.

System

Figure 5.25
Typical Kalman filter application [106].
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Static estimation. Suppose that our robot has two sensors, an ultrasonic range sensor and
a laser rangefinding sensor. The laser rangefinder provides far richer and more accurate
data for localization, but it will suffer from failure modes that differ from that of the sonar
ranger. For instance, a glass wall will be transparent to the laser but, when measured head-
on, the sonar will provide an accurate reading. Thus we wish to combine the information
provided by the two sensors, recognizing that such sensor fusion, when done in a principled
way, can only result in information gain.

The Kalman filter enables such fusion extremely efficiently, as long as we are willing to
approximate the error characteristics of these sensors with unimodal, zero-mean, Gaussian
noise. Specifically, assume we have taken two measurements, one with the sonar sensor at
time k and one with the laser rangefinder at time . Based on each measurement indi-
vidually we can estimate the robot’s position. Such an estimate derived from the sonar is

 and the estimate of position based on the laser is . As a simplified way of character-
izing the error associated with each of these estimates, we presume a (unimodal) Gaussian
probability density curve and thereby associate one variance with each measurement: 
and . The two dashed probability densities in figure 5.26 depict two such measurements.
In summary, this yields two robot position estimates:

 with variance  (5.28)

 with variance .  (5.29)

The question is, how do we fuse (combine) these data to get the best estimate  for the
robot position? We are assuming that there was no robot motion between time  and time

, and therefore we can directly apply the same weighted least-squares technique of
equation (5.26) in section 4.3.1.1. Thus we write

 (5.30)

with  being the weight of measurement . To find the minimum error we set the deriv-
ative of  equal to zero.

 (5.31)
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 (5.32)

 (5.33)

If we take as the weight 

 (5.34)

then the value of  in terms of two measurements can be defined as follows:

 (5.35)

   ;    (5.36)

Note that from equation (5.36) we can see that the resulting variance  is less than all
the variances  of the individual measurements. Thus the uncertainty of the position esti-
mate has been decreased by combining the two measurements. The solid probability den-
sity curve represents the result of the Kalman filter in figure 5.26, depicting this result. Even
poor measurements, such as are provided by the sonar, will only increase the precision of
an estimate. This is a result that we expect based on information theory.

Equation (5.35) can be rewritten as
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or, in the final form that is used in Kalman filter implementation,

 (5.38)

where

  ;     ;    (5.39)

Equation (5.38) tells us, that the best estimate  of the state  at time  is
equal to the best prediction of the value  before the new measurement  is taken, plus
a correction term of an optimal weighting value times the difference between  and the
best prediction  at time . The updated variance of the state  is given using
equation (5.36)

 (5.40)

Figure 5.26
Fusing probability density of two estimates [106].
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The new, fused estimate of robot position provided by the Kalman filter is again subject
to a Gaussian probability density curve. Its mean and variance are simply functions of the
inputs’ means and variances. Thus the Kalman filter provides both a compact, simplified
representation of uncertainty and an extremely efficient technique for combining heteroge-
neous estimates to yield a new estimate for our robot’s position.

Dynamic estimation. Next, consider a robot that moves between successive sensor mea-
surements. Suppose that the motion of the robot between times and  is described
by the velocity u and the noise w which represents the uncertainty of the actual velocity:

 (5.41)

If we now start at time , knowing the variance  of the robot position at this time and
knowing the variance  of the motion, we obtain for the time  just when the measure-
ment is taken,

 (5.42)

 (5.43)

where

;

 and  are the time in seconds at  and  respectively.

Thus  is the optimal prediction of the robot’s position just as the measurement is
taken at time . It describes the growth of position error until a new measurement is
taken (figure 5.27).

We can now rewrite equations (5.38) and (5.39) using equations (5.42) and (5.43).
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The optimal estimate at time  is given by the last estimate at  and the estimate of
the robot motion including the estimated movement errors. 

By extending the above equations to the vector case and allowing time-varying param-
eters in the system and a description of noise, we can derive the Kalman filter localization
algorithm.

5.6.3.2   Application to mobile robots: Kalman filter localization
The Kalman filter is an optimal and efficient sensor fusion technique. Application of the
Kalman filter to localization requires posing the robot localization problem as a sensor
fusion problem. Recall that the basic probabilistic update of robot belief state can be seg-
mented into two phases, perception update and action update, as specified by equations
(5.21) and (5.22). 

The key difference between the Kalman filter approach and our earlier Markov localiza-
tion approach lies in the perception update process. In Markov localization, the entire per-
ception, that is, the robot’s set of instantaneous sensor measurements, is used to update each
possible robot position in the belief state individually using the Bayes formula. In some
cases, the perception is abstract, having been produced by a feature extraction mechanism,
as in Dervish. In other cases, as with Rhino, the perception consists of raw sensor readings.

By contrast, perception update using a Kalman filter is a multistep process. The robot’s
total sensory input is treated not as a monolithic whole but as a set of extracted features that

Figure 5.27
Propagation of probability density of a moving robot [106].
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each relate to objects in the environment. Given a set of possible features, the Kalman filter
is used to fuse the distance estimate from each feature to a matching object in the map.
Instead of carrying out this matching process for many possible robot locations individually
as in the Markov approach, the Kalman filter accomplishes the same probabilistic update
by treating the whole, unimodal, and Gaussian belief state at once. Figure 5.28 depicts the
particular schematic for Kalman filter localization.

The first step is action update or position prediction, the straightforward application of
a Gaussian error motion model to the robot’s measured encoder travel. The robot then col-
lects actual sensor data and extracts appropriate features (e.g., lines, doors, or even the
value of a specific sensor) in the observation step. At the same time, based on its predicted
position in the map, the robot generates a measurement prediction which identifies the fea-
tures that the robot expects to find and the positions of those features. In matching the robot
identifies the best pairings between the features actually extracted during observation and
the expected features due to measurement prediction. Finally, the Kalman filter can fuse the
information provided by all of these matches to update the robot belief state in estimation.

In the following sections these five steps are described in greater detail. The presentation
is based on the work of Leonard and Durrant-Whyte [23, pp. 61–65]. 

position
estimate

Actual Observations
(on-board sensors)

Position Prediction
Observation Prediction

Figure 5.28
Schematic for Kalman filter mobile robot localization (see [23]).
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1. Robot position prediction. The robot’s position at timestep  is predicted based
on its old location (at timestep ) and its movement due to the control input :

 (5.46)

For the differential-drive robot,  is derived in equations (5.6) and (5.7)
respectively.

Knowing the plant and error model, we can also compute the variance  asso-
ciated with this prediction [see equation. (5.9), section 5.2.4]:

 (5.47)

This allows us to predict the robot’s position and its uncertainty after a movement spec-
ified by the control input . Note that the belief state is assumed to be Gaussian, and so
we can characterize the belief state with just the two parameters  and

.

2. Observation. The second step it to obtain sensor measurements  from the
robot at time . In this presentation, we assume that the observation is the result of a
feature extraction process executed on the raw sensor data. Therefore, the observation con-
sists of a set  of single observations  extracted from various sensors. Formally,
each single observation can represent an extracted feature such as a line or door, or even a
single, raw sensor value. 

The parameters of the features are usually specified in the sensor frame and therefore in
a local reference frame of the robot. However, for matching we need to represent the obser-
vations and measurement predictions in the same frame . In our presentation we will
transform the measurement predictions from the global coordinate frame to the sensor
frame . This transformation is specified in the function  discussed in the next para-
graph.

3. Measurement prediction. We use the predicted robot position  and the map
 to generate multiple predicted feature observations . Each predicted feature has its

position transformed into the sensor frame:

 (5.48)

We can define the measurement prediction as the set containing all  predicted feature
observations:
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 (5.49)

The predicted state estimate  is used to compute the measurement Jacobian
 for each prediction. As you will see in the example below, the function  is mainly a

coordinate transformation between the world frame and the sensor frame.

4. Matching. At this point we have a set of actual, single observations, which are features
in sensor space, and we also have a set of predicted features, also positioned in sensor space.
The matching step has the purpose of identifying all of the single observations that match
specific predicted features well enough to be used during the estimation process. In other
words, we will, for a subset of the observations and a subset of the predicted features, find
pairings that intuitively say “this observation is the robot’s measurement of this predicted
feature based on the map.”

Formally, the goal of the matching procedure is to produce an assignment from obser-
vations  to the targets  (stored in the map). For each measurement prediction for
which a corresponding observation is found we calculate the innovation . Inno-
vation is a measure of the difference between the predicted and observed measurements:

 (5.50)

The innovation covariance  can be found by applying the error propagation
law [section 4.2.2, equation (4.60)]:

 (5.51)

where  represents the covariance (noise) of the measurement .
To determine the validity of the correspondence between measurement prediction and

observation, a validation gate has to be specified. A possible definition of the validation
gate is the Mahalanobis distance:

 (5.52)

However, dependent on the application, the sensors, and the environment models, more
sophisticated validation gates might be employed.

The validation equation is used to test observation  for membership in the val-
idation gate for each predicted measurement. When a single observation falls in the valida-
tion gate, we get a successful match. If one observation falls in multiple validation gates,
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the best matching candidate is selected or multiple hypotheses are tracked. Observations
that do not fall in the validation gate are simply ignored for localization. Such observations
could have resulted from objects not in the map, such as new objects (e.g., someone places
a large box in the hallway) or transient objects (e.g., humans standing next to the robot may
form a line feature). One approach is to take advantage of such unmatched observations to
populate the robot’s map.

5. Estimation: applying the Kalman filter. Next we compute the best estimate
 of the robot’s position based on the position prediction and all the observa-

tions at time . To do this position update, we first stack the validated observations
 into a single vector to form  and designate the composite innovation
. Then we stack the measurement Jacobians  for each validated measurement

together to form the composite Jacobian  and the measurement error (noise) vector
. We can then compute the composite innovation covari-

ance  according to equation (5.51) and by utilizing the well-known result
[3] that the Kalman gain can be written as

 (5.53)

we can update the robot’s position estimate

 (5.54)

with the associated variance

 (5.55)

For the 1D case and with  we can show that this formula corre-
sponds to the 1D case derived earlier

Equation (5.53) is simplified to

 (5.56)

corresponding to equation (5.45), and equation (5.54) simplifies to
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 (5.57)

corresponding to equation (5.44).

5.6.3.3   Case study: Kalman filter localization with line feature extraction
The Pygmalion robot at EPFL is a differential-drive robot that uses a laser rangefinder as
its primary sensor [37, 38]. In contrast to both Dervish and Rhino, the environmental rep-
resentation of Pygmalion is continuous and abstract: the map consists of a set of infinite
lines describing the environment. Pygmalion’s belief state is, of course, represented as a
Gaussian distribution since this robot uses the Kalman filter localization algorithm. The
value of its mean position  is represented to a high level of precision, enabling Pygmalion
to localize with very high precision when desired. Below, we present details for Pygma-
lion’s implementation of the five Kalman filter localization steps. For simplicity we assume
that the sensor frame  is equal to the robot frame . If not specified all the vectors
are represented in the world coordinate system .

1. Robot position prediction. At the time increment  the robot is at position
 and its best position estimate is . The control input

 drives the robot to the position  (figure 5.29). 
The robot position prediction  at the time increment  can be computed

from the previous estimate  and the odometric integration of the movement. For
the differential drive that Pygmalion has we can use the model (odometry) developed in
section 5.2.4:

 (5.58)
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 (5.59)

where

 (5.60)

2. Observation. For line-based localization, each single observation (i.e., a line feature) is
extracted from the raw laser rangefinder data and consists of the two line parameters ,

 or ,  (figure 4.36) respectively. For a rotating laser rangefinder, a representation
in the polar coordinate frame is more appropriate and so we use this coordinate frame here:

 (5.61)

After acquiring the raw data at time k+1, lines and their uncertainties are extracted (fig-
ure 5.30a, b). This leads to  observed lines with  line parameters (figure 5.30c) and
a covariance matrix for each line that can be calculated from the uncertainties of all the
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Figure 5.29
Prediction of the robot’s position (thick) based on its former position (thin) and the executed move-
ment. The ellipses drawn around the robot positions represent the uncertainties in the x,y direction
(e.g.; ). The uncertainty of the orientation  is not represented in the picture. 3σ θ
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measurement points contributing to each line as developed for line extraction in section
4.3.1.1:

 (5.62)
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Figure 5.30
Observation: From the raw data (a) acquired by the laser scanner at time k + 1, lines are extracted (b).
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3. Measurement prediction. Based on the stored map and the predicted robot position
, the measurement predictions of expected features  are generated (figure 5.31).

To reduce the required calculation power, there is often an additional step that first selects
the possible features, in this case lines, from the whole set of features in the map. These
lines are stored in the map and specified in the world coordinate system . Therefore
they need to be transformed to the robot frame :

  (5.63)

According to figure (5.31), the transformation is given by

 (5.64)

and its Jacobian  by

p̂ k k( ) zt i,

x

y

Figure 5.31
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 (5.65)

The measurement prediction results in predicted lines represented in the robot coordi-
nate frame (figure 5.32). They are uncertain, because the prediction of robot position is
uncertain.

4. Matching. For matching, we must find correspondence (or a pairing) between predicted
and observed features (figure 5.33). In our case we take the Mahalanobis distance

hi∇

αt i,∂

x̂∂
-----------

αt i,∂

ŷ∂
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Figure 5.32
Measurement predictions: Based on the map and the estimated robot position the targets (visible
lines) are predicted. They are represented in the model space similar to the observations.
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 (5.66)

with

 (5.67)

 (5.68)

Figure 5.33
Matching: The observations (thick) and measurement prediction (thin) are matched and the innova-
tion and its uncertainties are calculated. 
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to enable finding the best matches while eliminating all other remaining observed and pre-
dicted unmatched features. 

5. Estimation. Applying the Kalman filter results in a final pose estimate corresponding
to the weighted sum of (figure 5.34)

• the pose estimates of each matched pairing of observed and predicted features;

• the robot position estimation based on odometry and observation positions.

5.7 Other Examples of Localization Systems

Markov localization and Kalman filter localization have been two extremely popular strat-
egies for research mobile robot systems navigating indoor environments. They have strong
formal bases and therefore well-defined behavior. But there are a large number of other
localization techniques that have been used with varying degrees of success on commercial
and research mobile robot platforms. We will not explore the space of all localization sys-
tems in detail. Refer to surveys such as [5] for such information.

There are, however, several categories of localization techniques that deserve mention.
Not surprisingly, many implementations of these techniques in commercial robotics

Figure 5.34
Kalman filter estimation of the new robot position: By fusing the prediction of robot position (thin)
with the innovation gained by the measurements (thick) we get the updated estimate  of the
robot position (very thick).

p̂ k k( )
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employ modifications of the robot’s environment, something that the Markov localization
and Kalman filter localization communities eschew. In the following sections, we briefly
identify the general strategy incorporated by each category and reference example systems,
including, as appropriate, those that modify the environment and those that function with-
out environmental modification.

5.7.1   Landmark-based navigation
Landmarks are generally defined as passive objects in the environment that provide a high
degree of localization accuracy when they are within the robot’s field of view. Mobile
robots that make use of landmarks for localization generally use artificial markers that have
been placed by the robot’s designers to make localization easy.

The control system for a landmark-based navigator consists of two discrete phases.
When a landmark is in view, the robot localizes frequently and accurately, using action
update and perception update to track its position without cumulative error. But when the
robot is in no landmark “zone,” then only action update occurs, and the robot accumulates
position uncertainty until the next landmark enters the robot’s field of view.

The robot is thus effectively dead-reckoning from landmark zone to landmark zone.
This in turn means the robot must consult its map carefully, ensuring that each motion
between landmarks is sufficiently short, given its motion model, that it will be able to local-
ize successfully upon reaching the next landmark.

Figure 5.35 shows one instantiation of landmark-based localization. The particular
shape of the landmarks enables reliable and accurate pose estimation by the robot, which
must travel using dead reckoning between the landmarks.

One key advantage of the landmark-based navigation approach is that a strong formal
theory has been developed for this general system architecture [98]. In this work, the
authors have shown precise assumptions and conditions which, when satisfied, guarantee

Figure 5.35
Z-shaped landmarks on the ground. Komatsu Ltd., Japan [5 pp. 179-180]
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that the robot will always be able to localize successfully. This work also led to a real-world
demonstration of landmark-based localization. Standard sheets of paper were placed on the
ceiling of the Robotics Laboratory at Stanford University, each with a unique checkerboard
pattern. A Nomadics 200 mobile robot was fitted with a monochrome CCD camera aimed
vertically up at the ceiling. By recognizing the paper landmarks, which were placed approx-
imately 2 m apart, the robot was able to localize to within several centimeters, then move,
using dead reckoning, to another landmark zone.

The primary disadvantage of landmark-based navigation is that in general it requires sig-
nificant environmental modification. Landmarks are local, and therefore a large number are
usually required to cover a large factory area or research laboratory. For example, the
Robotics Laboratory at Stanford made use of approximately thirty discrete landmarks, all
affixed individually to the ceiling.

5.7.2   Globally unique localization
The landmark-based navigation approach makes a strong general assumption: when the
landmark is in the robot’s field of view, localization is essentially perfect. One way to reach
the Holy Grail of mobile robotic localization is to effectively enable such an assumption to
be valid no matter where the robot is located. It would be revolutionary if a look at the
robot’s sensors immediately identified its particular location, uniquely and repeatedly.

Such a strategy for localization is surely aggressive, but the question of whether it can
be done is primarily a question of sensor technology and sensing software. Clearly, such a
localization system would need to use a sensor that collects a very large amount of infor-
mation. Since vision does indeed collect far more information than previous sensors, it has
been used as the sensor of choice in research toward globally unique localization.

Figure 4.49 depicts the image taken by a catadioptric camera system. If humans were
able to look at an individual such picture and identify the robot’s location in a well-known
environment, then one could argue that the information for globally unique localization
does exist within the picture; it must simply be teased out.

One such approach has been attempted by several researchers and involves constructing
one or more image histograms to represent the information content of an image stably (see
e.g., figure 4.50 and section 4.3.2.2). A robot using such an image-histogramming system
has been shown to uniquely identify individual rooms in an office building as well as indi-
vidual sidewalks in an outdoor environment. However, such a system is highly sensitive to
external illumination and provides only a level of localization resolution equal to the visual
footprint of the camera optics.

The angular histogram depicted in figure 4.39 of the previous chapter is another example
in which the robot’s sensor values are transformed into an identifier of location. However,
due to the limited information content of sonar ranging strikes, it is likely that two places
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in the robot’s environment may have angular histograms that are too similar to be differen-
tiated successfully.

One way of attempting to gather sufficient sonar information for global localization is
to allow the robot time to gather a large amount of sonar data into a local evidence grid (i.e.,
occupancy grid) first, then match the local evidence grid with a global metric map of the
environment. In [129] the researchers demonstrate such a system as able to localize on the
fly even as significant changes are made to the environment, degrading the fidelity of the
map. Most interesting is that the local evidence grid represents information well enough
that it can be used to correct and update the map over time, thereby leading to a localization
system that provides corrective feedback to the environmental representation directly. This
is similar in spirit to the idea of taking rejected observed features in the Kalman filter local-
ization algorithm and using them to create new features in the map.

A most promising, new method for globally unique localization is called mosaic-based
localization [83]. This fascinating approach takes advantage of an environmental feature
that is rarely used by mobile robots: fine-grained floor texture. This method succeeds pri-
marily because of the recent ubiquity of very fast processors, very fast cameras, and very
large storage media. 

The robot is fitted with a high-quality high-speed CCD camera pointed toward the floor,
ideally situated between the robot’s wheels, and illuminated by a specialized light pattern
off the camera axis to enhance floor texture. The robot begins by collecting images of the
entire floor in the robot’s workspace using this camera. Of course, the memory require-
ments are significant, requiring a 10 GB drive in order to store the complete image library
of a 300 x 300  area.

Once the complete image mosaic is stored, the robot can travel any trajectory on the
floor while tracking its own position without difficulty. Localization is performed by
simply recording one image, performing action update, then performing perception update
by matching the image to the mosaic database using simple techniques based on image
database matching. The resulting performance has been impressive: such a robot has been
shown to localize repeatedly with 1 mm precision while moving at 25 km/hr.

The key advantage of globally unique localization is that, when these systems function
correctly, they greatly simplify robot navigation. The robot can move to any point and will
always be assured of localizing by collecting a sensor scan.

But the main disadvantage of globally unique localization is that it is likely that this
method will never offer a complete solution to the localization problem. There will always
be cases where local sensory information is truly ambiguous and, therefore, globally unique
localization using only current sensor information is unlikely to succeed. Humans often
have excellent local positioning systems, particularly in nonrepeating and well-known
environments such as their homes. However, there are a number of environments in which
such immediate localization is challenging even for humans: consider hedge mazes and



248 Chapter 5

large new office buildings with repeating halls that are identical. Indeed, the mosaic-based
localization prototype described above encountered such a problem in its first implementa-
tion. The floor of the factory floor had been freshly painted and was thus devoid of suffi-
cient micro fractures to generate texture for correlation. Their solution was to modify the
environment after all, painting random texture onto the factory floor.

5.7.3   Positioning beacon systems
One of the most reliable solutions to the localization problem is to design and deploy an
active beacon system specifically for the target environment. This is the preferred tech-
nique used by both industry and military applications as a way of ensuring the highest pos-
sible reliability of localization. The GPS system can be considered as just such a system
(see section 4.1.5.1).

Figure 5.36 depicts one such beacon arrangement for a collection of robots. Just as with
GPS, by designing a system whereby the robots localize passively while the beacons are
active, any number of robots can simultaneously take advantage of a single beacon system.
As with most beacon systems, the design depicted depends foremost upon geometric prin-
ciples to effect localization. In this case the robots must know the positions of the two active
ultrasonic beacons in the global coordinate frame in order to localize themselves to the
global coordinate frame.

A popular type of beacon system in industrial robotic applications is depicted in figure
5.37. In this case beacons are retroreflective markers that can be easily detected by a mobile
robot based on their reflection of energy back to the robot. Given known positions for the
optical retroreflectors, a mobile robot can identify its position whenever it has three such

Figure 5.36
Active ultrasonic beacons.
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beacons in sight simultaneously. Of course, a robot with encoders can localize over time as
well, and does not need to measure its angle to all three beacons at the same instant. 

The advantage of such beacon-based systems is usually extremely high engineered reli-
ability. By the same token, significant engineering usually surrounds the installation of
such a system in a specific commercial setting. Therefore, moving the robot to a different
factory floor will be both, time consuming and expensive. Usually, even changing the
routes used by the robot will require serious re-engineering.

5.7.4   Route-based localization
Even more reliable than beacon-based systems are route-based localization strategies. In
this case, the route of the robot is explicitly marked so that it can determine its position, not
relative to some global coordinate frame but relative to the specific path it is allowed to
travel. There are many techniques for marking such a route and the subsequent intersec-
tions. In all cases, one is effectively creating a railway system, except that the railway
system is somewhat more flexible and certainly more human-friendly than a physical rail.
For example, high ultraviolet-reflective, optically transparent paint can mark the route such
that only the robot, using a specialized sensor, easily detects it. Alternatively, a guidewire
buried underneath the hall can be detected using inductive coils located on the robot chas-
sis.

In all such cases, the robot localization problem is effectively trivialized by forcing the
robot to always follow a prescribed path. To be fair, there are new industrial unmanned
guided vehicles that do deviate briefly from their route in order to avoid obstacles. Never-
theless, the cost of this extreme reliability is obvious: the robot is much more inflexible
given such localization means, and therefore any change to the robot’s behavior requires
significant engineering and time.

Figure 5.37
Passive optical beacons.
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5.8 Autonomous Map Building

All of the localization strategies we have discussed require human effort to install the robot
into a space. Artificial environmental modifications may be necessary. Even if this not be
case, a map of the environment must be created for the robot. But a robot that localizes suc-
cessfully has the right sensors for detecting the environment, and so the robot ought to build
its own map. This ambition goes to the heart of autonomous mobile robotics. In prose, we
can express our eventual goal as follows:

Starting from an arbitrary initial point, a mobile robot should be able to autonomously
explore the environment with its on-board sensors, gain knowledge about it, interpret the
scene, build an appropriate map, and localize itself relative to this map.

Accomplishing this goal robustly is probably years away, but an important subgoal is
the invention of techniques for autonomous creation and modification of an environmental
map. Of course a mobile robot’s sensors have only a limited range, and so it must physically
explore its environment to build such a map. So, the robot must not only create a map but
it must do so while moving and localizing to explore the environment. In the robotics com-
munity, this is often called the simultaneous localization and mapping (SLAM) problem,
arguably the most difficult problem specific to mobile robot systems.

The reason that SLAM is difficult is born precisely from the interaction between the
robot’s position updates as it localizes and its mapping actions. If a mobile robot updates
its position based on an observation of an imprecisely known feature, the resulting position
estimate becomes correlated with the feature location estimate. Similarly, the map becomes
correlated with the position estimate if an observation taken from an imprecisely known
position is used to update or add a feature to the map. The general problem of map-building
is thus an example of the chicken-and-egg problem. For localization the robot needs to
know where the features are, whereas for map-building the robot needs to know where it is
on the map. 

The only path to a complete and optimal solution to this joint problem is to consider all
the correlations between position estimation and feature location estimation. Such cross-
correlated maps are called stochastic maps, and we begin with a discussion of the theory
behind this approach in the following section [55].

Unfortunately, implementing such an optimal solution is computationally prohibitive. In
response a number of researchers have offered other solutions that have functioned well in
limited circumstances. Section 5.8.2 characterizes these alternative partial solutions.

5.8.1   The stochastic map technique
Figure 5.38 shows a general schematic incorporating map building and maintenance into
the standard localization loop depicted by figure 5.28 during the discussion of Kalman filter
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localization [23]. The added arcs represent the additional flow of information that occurs
when there is an imperfect match between observations and measurement predictions. 

Unexpected observations will effect the creation of new features in the map, whereas
unobserved measurement predictions will effect the removal of features from the map. As
discussed earlier, each specific prediction or observation has an unknown exact value and
so it is represented by a distribution. The uncertainties of all of these quantities must be con-
sidered throughout this process. 

The new type of map we are creating not only has features in it, as did previous maps,
but it also has varying degrees of probability that each feature is indeed part of the environ-
ment. We represent this new map  with a set  of probabilistic feature locations , each
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Figure 5.38
General schematic for concurrent localization and map building (see [23]).

P
er

ce
pt

io
n

Matching

Estimation (fusion) 
using confirmed 

map

raw sensor data or
extracted features

pr
ed

ic
te

d 
fe

at
ur

e
ob

se
rv

at
io

ns

position
estimate

matched predic-
tions

and observations

YES

Encoder

Map

Refine Feature 
Parameters

increase credibility

Add New
Features

extend map

Remove Offensive
Features

decrease credibility

Map Building and Maintenance

Unexpected
Observation?

YES

unexpected
observations

NO NO

unobserved
predictions

M n ẑt
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with the covariance matrix  and an associated credibility factor  between 0 and 1 quan-
tifying the belief in the existence of the feature in the environment (see figure 5.39):

 (5.69)

In contrast to the map used for Kalman filter localization previously, the map  is not
assumed to be precisely known because it will be created by an uncertain robot over time.
This is why the features  are described with associated covariance matrices .

Just as with Kalman filter localization, the matching step yields has three outcomes in
regard to measurement predictions and observations: matched prediction and observations,
unexpected observations, and unobserved predictions. Localization, or the position update
of the robot, proceeds as before. However, the map is also updated now, using all three out-
comes and complete propagation of all the correlated uncertainties (see [23] for more
details).

An interesting variable is the credibility factor , which governs the likelihood that the
mapped feature is indeed in the environment. How should the robot’s failure to match
observed features to a particular map feature reduce that map feature’s credibility? And
also, how should the robot’s success at matching a mapped feature increase the chance that
the mapped feature is “correct?” In [23] the following function is proposed for calculating
credibility:

 (5.70)
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where  and  define the learning and forgetting rate and  and  are the number of
matched and unobserved predictions up to time , respectively. The update of the covari-
ance matrix  can be done similarly to the position update seen in the previous section. In
map-building the feature positions and the robot’s position are strongly correlated. This
forces us to use a stochastic map, in which all cross-correlations must be updated in each
cycle [55, 113, 136].

The stochastic map consists of a stacked system state vector:

 (5.71)

and a system state covariance matrix:

 (5.72)

where the index r stands for the robot and the index  to n for the features in the map.
In contrast to localization based on an a priori accurate map, in the case of a stochastic

map the cross-correlations must be maintained and updated as the robot is performing auto-
matic map-building. During each localization cycle, the cross-correlations robot-to-feature
and feature-to-robot are also updated. In short, this optimal approach requires every value
in the map to depend on every other value, and therein lies the reason that such a complete
solution to the automatic mapping problem is beyond the reach of even today’s computa-
tional resources.

5.8.2   Other mapping techniques
The mobile robotics research community has spent significant research effort on the prob-
lem of automatic mapping, and has demonstrated working systems in many environments
without having solved the complete stochastic map problem described earlier. This field of
mobile robotics research is extremely large, and this text will not present a comprehensive
survey of the field. Instead, we present below two key considerations associated with auto-
matic mapping, together with brief discussions of the approaches taken by several auto-
matic mapping solutions to overcome these challenges.
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5.8.2.1   Cyclic environments
Possibly the single hardest challenge for automatic mapping to be conquered is to correctly
map cyclic environments. The problem is simple: given an environment that has one or
more loops or cycles (e.g., four hallways that intersect to form a rectangle), create a glo-
bally consistent map for the whole environment.

This problem is hard because of the fundamental behavior of automatic mapping sys-
tems: the maps they create are not perfect. And, given any local imperfection, accumulating
such imperfections over time can lead to arbitrarily large global errors between a map, at
the macrolevel, and the real world, as shown in figure 5.40. Such global error is usually
irrelevant to mobile robot localization and navigation. After all, a warped map will still
serve the robot perfectly well so long as the local error is bounded. However, an extremely
large loop still eventually returns to the same spot, and the robot must be able to note this
fact in its map. Therefore, global error does indeed matter in the case of cycles.

In some of the earliest work attempting to solve the cyclic environment problem,
Kuipers and Byun [94] used a purely topological representation of the environment, rea-
soning that the topological representation only captures the most abstract, most important

Figure 5.40
Cyclic environments: A naive, local mapping strategy with small local error leads to global maps that
have a significant error, as demonstrated by this real-world run on the left. By applying topological
correction, the grid map on the right is extracted (courtesy of S. Thrun [142]).
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features and avoids a great deal of irrelevant detail. When the robot arrives at a topological
node that could be the same as a previously visited and mapped node (e.g., similar distin-
guishing features), then the robot postulates that it has indeed returned to the same node.
To check this hypothesis, the robot explicitly plans and moves to adjacent nodes to see if
its perceptual readings are consistent with the cycle hypothesis.

With the recent popularity of metric maps, such as fixed decomposition grid represen-
tations, the cycle detection strategy is not as straightforward. Two important features are
found in most autonomous mapping systems that claim to solve the cycle detection prob-
lem. First, as with many recent systems, these mobile robots tend to accumulate recent per-
ceptual history to create small-scale local submaps [51, 74, 157]. Each submap is treated as
a single sensor during the robot’s position update. The advantage of this approach is two-
fold. Because odometry is relatively accurate over small distances, the relative registration
of features and raw sensor strikes in a local submap will be quite accurate. In addition to
this, the robot will have created a virtual sensor system with a significantly larger horizon
than its actual sensor system’s range. In a sense, this strategy at the very least defers the
problem of very large cyclic environments by increasing the map scale that can be handled
well by the robot.

The second recent technique for dealing with cycle environments is in fact a return to
the topological representation. Some recent automatic mapping systems will attempt to
identify cycles by associating a topology with the set of metric submaps, explicitly identi-
fying the loops first at the topological level. In the case of [51], for example, the topological
level loop is identified by a human who pushes a button at a known landmark position. In
the case of [74], the topological level loop is determined by performing correspondence
tests between submaps, postulating that two submaps represent the same place in the envi-
ronment when the correspondence is good.

One could certainly imagine other augmentations based on known topological methods.
For example, the globally unique localization methods described in section 5.7 could be
used to identify topological correctness. It is notable that the automatic mapping research
of the present has, in many ways, returned to the basic topological correctness question that
was at the heart of some of the earliest automatic mapping research in mobile robotics more
than a decade ago. Of course, unlike that early work, today’s automatic mapping results
boast correct cycle detection combined with high-fidelity geometric maps of the environ-
ment.

5.8.2.2   Dynamic environments
A second challenge extends not just to existing autonomous mapping solutions but to the
basic formulation of the stochastic map approach. All of these strategies tend to assume that
the environment is either unchanging or changes in ways that are virtually insignificant.
Such assumptions are certainly valid with respect to some environments, such as, for exam-
ple, the computer science department of a university at 3 AM. However, in a great many
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cases this assumption is incorrect. In the case of wide-open spaces that are popular gather-
ing places for humans, there is rapid change in the free space and a vast majority of sensor
strikes represent detection of transient humans rather than fixed surfaces such as the perim-
eter wall. Another class of dynamic environments are spaces such as factory floors and
warehouses, where the objects being stored redefine the topology of the pathways on a day-
to-day basis as shipments are moved in and out.

In all such dynamic environments, an automatic mapping system should capture the
salient objects detected by its sensors and, furthermore, the robot should have the flexibility
to modify its map as to the positions of these salient objects changes. The subject of con-
tinuous mapping, or mapping of dynamic environments, is to some degree a direct out-
growth of successful strategies for automatic mapping of unfamiliar environments. For
example, in the case of stochastic mapping using the credibility factor  mechanism, the
credibility equation can continue to provide feedback regarding the probability of the exist-
ence of various mapped features after the initial map creation process is ostensibly com-
plete. Thus, a mapping system can become a map-modifying system by simply continuing
to operate. This is most effective, of course, if the mapping system is real-time and incre-
mental. If map construction requires off-line global optimization, then the desire to make
small-grained, incremental adjustments to the map is more difficult to satisfy.

Earlier we stated that a mapping system should capture only the salient objects detected
by its sensors. One common argument for handling the detection of, for instance, humans
in the environment is that mechanisms such as  can take care of all features that did not
deserve to be mapped in the first place. For example, in [157] the authors develop a system
based on a set of local occupancy grids (called evidence grids) and a global occupancy grid.
Each time the robot’s most recent local evidence grid is used to update a region of the global
occupancy grid, extraneous occupied cells in the global occupancy grid are freed if the local
occupancy grid detected no objects (with high confidence) at those same positions. 

The general solution to the problem of detecting salient features, however, begs a solu-
tion to the perception problem in general. When a robot’s sensor system can reliably detect
the difference between a wall and a human, using, for example, a vision system, then the
problem of mapping in dynamic environments will become significantly more straightfor-
ward.

We have discussed just two important considerations for automatic mapping. There is
still a great deal of research activity focusing on the general map-building and localization
problem [22, 23, 55, 63, 80, 134, 147, 156]. However, there are few groups working on the
general problem of probabilistic map-building (i.e., stochastic maps) and, so far, a consis-
tent and absolutely general solution is yet to be found. This field is certain to produce sig-
nificant new results in the next several years, and as the perceptual power of robots
improves we expect the payoff to be greatest here.
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6 Planning and Navigation

6.1 Introduction

This book has focused on the elements of a mobile robot that are critical to robust mobility:
the kinematics of locomotion; sensors for determining the robot’s environmental context;
and techniques for localizing with respect to its map. We now turn our attention to the
robot’s cognitive level. Cognition generally represents the purposeful decision-making and
execution that a system utilizes to achieve its highest-order goals.

In the case of a mobile robot, the specific aspect of cognition directly linked to robust
mobility is navigation competence. Given partial knowledge about its environment and a
goal position or series of positions, navigation encompasses the ability of the robot to act
based on its knowledge and sensor values so as to reach its goal positions as efficiently and
as reliably as possible. The focus of this chapter is how the tools of the previous chapters
can be combined to solve this navigation problem.

Within the mobile robotics research community, a great many approaches have been
proposed for solving the navigation problem. As we sample from this research background
it will become clear that in fact there are strong similarities between all of these approaches
even though they appear, on the surface, quite disparate. The key difference between vari-
ous navigation architectures is the manner in which they decompose the problem into
smaller subunits. In section 6.3 below, we describe the most popular navigation architec-
tures, contrasting their relative strengths and weaknesses.

First, however, in section 6.2 we discuss two key additional competences required for
mobile robot navigation. Given a map and a goal location, path planning involves identi-
fying a trajectory that will cause the robot to reach the goal location when executed. Path
planning is a strategic problem-solving competence, as the robot must decide what to do
over the long term to achieve its goals.

The second competence is equally important but occupies the opposite, tactical extreme.
Given real-time sensor readings, obstacle avoidance means modulating the trajectory of the
robot in order to avoid collisions. A great variety of approaches have demonstrated compe-
tent obstacle avoidance, and we survey a number of these approaches as well.
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6.2 Competences for Navigation: Planning and Reacting

In the artificial intelligence community planning and reacting are often viewed as contrary
approaches or even opposites. In fact, when applied to physical systems such as mobile
robots, planning and reacting have a strong complementarity, each being critical to the
other’s success. The navigation challenge for a robot involves executing a course of action
(or plan) to reach its goal position. During execution, the robot must react to unforeseen
events (e.g., obstacles) in such a way as to still reach the goal. Without reacting, the plan-
ning effort will not pay off because the robot will never physically reach its goal. Without
planning, the reacting effort cannot guide the overall robot behavior to reach a distant goal
– again, the robot will never reach its goal.

An information-theoretic formulation of the navigation problem will make this comple-
mentarity clear. Suppose that a robot  at time  has a map  and an initial belief state

. The robot’s goal is to reach a position  while satisfying some temporal constraints:
. Thus the robot must be at location  at or before timestep n.

Although the goal of the robot is distinctly physical, the robot can only really sense its
belief state, not its physical location, and therefore we map the goal of reaching location 
to reaching a belief state , corresponding to the belief that . With this for-
mulation, a plan  is nothing more than one or more trajectories from  to . In other
words, plan q will cause the robot’s belief state to transition from  to  if the plan is
executed from a world state consistent with both  and . 

Of course the problem is that the latter condition may not be met. It is entirely possible
that the robot’s position is not quite consistent with , and it is even likelier that  is
either incomplete or incorrect. Furthermore, the real-world environment is dynamic. Even
if  is correct as a single snapshot in time, the planner’s model regarding how  changes
over time is usually imperfect.

In order to reach its goal nonetheless, the robot must incorporate new information gained
during plan execution. As time marches forward, the environment changes and the robot’s
sensors gather new information. This is precisely where reacting becomes relevant. In the
best of cases, reacting will modulate robot behavior locally in order to correct the planned-
upon trajectory so that the robot still reaches the goal. At times, unanticipated new infor-
mation will require changes to the robot’s strategic plans, and so ideally the planner also
incorporates new information as that new information is received.

Taken to the limit, the planner would incorporate every new piece of information in real
time, instantly producing a new plan that in fact reacts to the new information appropri-
ately. This theoretical extreme, at which point the concept of planning and the concept of
reacting merge, is called integrated planning and execution and is discussed in section
6.3.4.3.
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A useful concept throughout this discussion of robot architecture involves whether par-
ticular design decisions sacrifice the system’s ability to achieve a desired goal whenever a
solution exists. This concept is termed completeness. More formally, the robot system is
complete if and only if, for all possible problems (i.e., initial belief states, maps, and goals),
when there exists a trajectory to the goal belief state, the system will achieve the goal belief
state (see [27] for further details). Thus when a system is incomplete, then there is at least
one example problem for which, although there is a solution, the system fails to generate a
solution. As you may expect, achieving completeness is an ambitious goal. Often, com-
pleteness is sacrificed for computational complexity at the level of representation or rea-
soning. Analytically, it is important to understand how completeness is compromised by
each particular system.

In the following sections, we describe key aspects of planning and reacting as they apply
to a mobile robot path planning and obstacle avoidance and describe how representational
decisions impact the potential completeness of the overall system. For greater detail, refer
to [21, 30, chapter 25].

6.2.1   Path planning
Even before the advent of affordable mobile robots, the field of path-planning was heavily
studied because of its applications in the area of industrial manipulator robotics. Interest-
ingly, the path planning problem for a manipulator with, for instance, six degrees of free-
dom is far more complex than that of a differential-drive robot operating in a flat
environment. Therefore, although we can take inspiration from the techniques invented for
manipulation, the path-planning algorithms used by mobile robots tend to be simpler
approximations owing to the greatly reduced degrees of freedom. Furthermore, industrial
robots often operate at the fastest possible speed because of the economic impact of high
throughput on a factory line. So, the dynamics and not just the kinematics of their motions
are significant, further complicating path planning and execution. In contrast, a number of
mobile robots operate at such low speeds that dynamics are rarely considered during path
planning, further simplifying the mobile robot instantiation of the problem.

Configuration space. Path planning for manipulator robots and, indeed, even for most
mobile robots, is formally done in a representation called configuration space. Suppose that
a robot arm (e.g., SCARA robot) has  degrees of freedom. Every state or configuration of
the robot can be described with  real values: , …, . The k-values can be regarded as
a point  in a -dimensional space called the configuration space  of the robot. This
description is convenient because it allows us to describe the complex 3D shape of the robot
with a single -dimensional point. 

Now consider the robot arm moving in an environment where the workspace (i.e., its
physical space) contains known obstacles. The goal of path planning is to find a path in the
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physical space from the initial position of the arm to the goal position, avoiding all colli-
sions with the obstacles. This is a difficult problem to visualize and solve in the physical
space, particularly as  grows large. But in configuration space the problem is straightfor-
ward. If we define the configuration space obstacle  as the subspace of  where the
robot arm bumps into something, we can compute the free space  in which the
robot can move safely. 

Figure 6.1 shows a picture of the physical space and configuration space for a planar
robot arm with two links. The robot’s goal is to move its end effector from position start to
end. The configuration space depicted is 2D because each of two joints can have any posi-
tion from 0 to . It is easy to see that the solution in C-space is a line from start to end
that remains always within the free space of the robot arm.

For mobile robots operating on flat ground, we generally represent robot position with
three variables , as in chapter 3. But, as we have seen, most robots are nonholo-
nomic, using differential-drive systems or Ackerman steered systems. For such robots, the
nonholonomic constraints limit the robot’s velocity  in each configuration

. For details regarding the construction of the appropriate free space to solve such
path-planning problems, see [21, p. 405]. 

In mobile robotics, the most common approach is to assume for path-planning purposes
that the robot is in fact holonomic, simplifying the process tremendously. This is especially
common for differential-drive robots because they can rotate in place and so a holonomic
path can be easily mimicked if the rotational position of the robot is not critical.

Figure 6.1
Physical space (a) and configuration space (b): (a) A two-link planar robot arm has to move from the
configuration start to end. The motion is thereby constraint by the obstacles 1 to 4. (b) The corre-
sponding configuration space shows the free space in joint coordinates (angle θ1 and θ2) and a path
that achieves the goal.
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Furthermore, mobile roboticists will often plan under the further assumption that the
robot is simply a point. Thus we can further reduce the configuration space for mobile robot
path planning to a 2D representation with just - and -axes. The result of all this simpli-
fication is that the configuration space looks essentially identical to a 2D (i.e., flat) version
of the physical space, with one important difference. Because we have reduced the robot to
a point, we must inflate each obstacle by the size of the robot’s radius to compensate. With
this new, simplified configuration space in mind, we can now introduce common tech-
niques for mobile robot path planning.

Path-planning overview. The robot’s environment representation can range from a con-
tinuous geometric description to a decomposition-based geometric map or even a topolog-
ical map, as described in section 5.5. The first step of any path-planning system is to
transform this possibly continuous environmental model into a discrete map suitable for the
chosen path-planning algorithm. Path planners differ as to how they effect this discrete
decomposition. We can identify three general strategies for decomposition:

1. Road map: identify a set of routes within the free space.

2. Cell decomposition: discriminate between free and occupied cells.

3. Potential field: impose a mathematical function over the space.

The following sections present common instantiations of the road map and cell decom-
position path-planning techniques, noting in each case whether completeness is sacrificed
by the particular representation.

6.2.1.1   Road map path planning
Road map approaches capture the connectivity of the robot’s free space in a network of 1D
curves or lines, called road maps. Once a road map is constructed, it is used as a network
of road (path) segments for robot motion planning. Path planning is thus reduced to con-
necting the initial and goal positions of the robot to the road network, then searching for a
series of roads from the initial robot position to its goal position. 

The road map is a decomposition of the robot’s configuration space based specifically
on obstacle geometry. The challenge is to construct a set of roads that together enable the
robot to go anywhere in its free space, while minimizing the number of total roads. Gener-
ally, completeness is preserved in such decompositions as long as the true degrees of free-
dom of the robot have been captured with appropriate fidelity. We describe two road map
approaches below that achieve this result with dramatically different types of roads. In the
case of the visibility graph, roads come as close as possible to obstacles and resulting paths
are minimum-length solutions. In the case of the Voronoi diagram, roads stay as far away
as possible from obstacles.

x y
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Visibility graph. The visibility graph for a polygonal configuration space  consists of
edges joining all pairs of vertices that can see each other (including both the initial and goal
positions as vertices as well). The unobstructed straight lines (roads) joining those vertices
are obviously the shortest distances between them. The task of the path planner is thus to
find the shortest path from the initial position to the goal position along the roads defined
by the visibility graph (figure 6.2).

Visibility graph path planning is moderately popular in mobile robotics, partly because
implementation is quite simple. Particularly when the environmental representation
describes objects in the environment as polygons in either continuous or discrete space, the
visibility graph search can employ the obstacle polygon descriptions readily.

There are, however, two important caveats when employing visibility graph search.
First, the size of the representation and the number of edges and nodes increase with the
number of obstacle polygons. Therefore the method is extremely fast and efficient in sparse
environments, but can be slow and inefficient compared to other techniques when used in
densely populated environments.

The second caveat is a much more serious potential flaw: the solution paths found by
visibility graph planning tend to take the robot as close as possible to obstacles on the way

C

Figure 6.2
Visibility graph [21]. The nodes of the graph are the initial and goal points and the vertices of the con-
figuration space obstacles (polygons). All nodes which are visible from each other are connected by
straight-line segments, defining the road map. This means there are also edges along each polygon’s
sides.
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start



Planning and Navigation 263

to the goal. More formally, we can prove that visibility graph planning is optimal in terms
of the length of the solution path. This powerful result also means that all sense of safety,
in terms of staying a reasonable distance from obstacles, is sacrificed for this optimality.
The common solution is to grow obstacles by significantly more than the robot’s radius, or,
alternatively, to modify the solution path after path planning to distance the path from
obstacles when possible. Of course such actions sacrifice the optimal-length results of vis-
ibility graph path planning.

Voronoi diagram. Contrasting with the visibility graph approach, a Voronoi diagram is a
complete road map method that tends to maximize the distance between the robot and
obstacles in the map. For each point in the free space, compute its distance to the nearest
obstacle. Plot that distance in figure 6.3 as a height coming out of the page. The height
increases as you move away from an obstacle. At points that are equidistant from two or
more obstacles, such a distance plot has sharp ridges. The Voronoi diagram consists of the
edges formed by these sharp ridge points. When the configuration space obstacles are poly-
gons, the Voronoi diagram consists of straight and parabolic segments. Algorithms that

goal

start

Figure 6.3
Voronoi diagram [21]. The Voronoi diagram consists of the lines constructed from all points that are
equidistant from two or more obstacles. The initial  and goal  configurations are mapped
into the Voronoi diagram to  and , each by drawing the line along which its distance to
the boundary of the obstacles increases the fastest. The direction of movement on the Voronoi dia-
gram is also selected so that the distance to the boundaries increases fastest. The points on the Voronoi
diagram represent transitions from line segments (minimum distance between two lines) to parabolic
segments (minimum distance between a line and a point).

qinit qgoal
q'init q'goal
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find paths on the Voronoi road map are complete just like visibility graph methods, because
the existence of a path in the free space implies the existence of one on the Voronoi diagram
as well (i.e., both methods guarantee completeness). However, the path in the Voronoi dia-
gram is usually far from optimal in the sense of total path length.

The Voronoi diagram has an important weakness in the case of limited range localiza-
tion sensors. Since this path-planning algorithm maximizes the distance between the robot
and objects in the environment, any short-range sensor on the robot will be in danger of fail-
ing to sense its surroundings. If such short-range sensors are used for localization, then the
chosen path will be quite poor from a localization point of view. On the other hand, the vis-
ibility graph method can be designed to keep the robot as close as desired to objects in the
map.

There is, however, an important subtle advantage that the Voronoi diagram method has
over most other obstacle avoidance techniques: executability. Given a particular planned
path via Voronoi diagram planning, a robot with range sensors, such as a laser rangefinder
or ultrasonics, can follow a Voronoi edge in the physical world using simple control rules
that match those used to create the Voronoi diagram: the robot maximizes the readings of
local minima in its sensor values. This control system will naturally keep the robot on
Voronoi edges, so that Voronoi-based motion can mitigate encoder inaccuracy. This inter-
esting physical property of the Voronoi diagram has been used to conduct automatic map-
ping of an environment by finding and moving on unknown Voronoi edges, then
constructing a consistent Voronoi map of the environment [59].

6.2.1.2   Cell decomposition path planning
The idea behind cell decomposition is to discriminate between geometric areas, or cells,
that are free and areas that are occupied by objects. The basic cell decomposition path-plan-
ning algorithm can be summarized as follows [30]:

• Divide  into simple, connected regions called “cells”.

• Determine which opens cells are adjacent and construct a “connectivity graph”.

• Find the cells in which the initial and goal configurations lie and search for a path in the
connectivity graph to join the initial and goal cell. 

• From the sequence of cells found with an appropriate searching algorithm, compute a
path within each cell, for example, passing through the midpoints of the cell boundaries
or by a sequence of wall-following motions and movements along straight lines.

An important aspect of cell decomposition methods is the placement of the boundaries
between cells. If the boundaries are placed as a function of the structure of the environment,
such that the decomposition is lossless, then the method is termed exact cell decomposition.
If the decomposition results in an approximation of the actual map, the system is termed

F
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approximate cell decomposition. In section 5.5.2 we described these decomposition strate-
gies as they apply to the design of map representation for localization. Here, we briefly
summarize these two cell decomposition techniques once again, providing greater detail
about their advantages and disadvantages relative to path planning.

Exact cell decomposition. Figure 6.4 depicts exact cell decomposition, whereby the
boundary of cells is based on geometric criticality. The resulting cells are each either com-
pletely free or completely occupied, and therefore path planning in the network is complete,
like the road map based methods above. The basic abstraction behind such a decomposition
is that the particular position of the robot within each cell of free space does not matter;
what matters is rather the robot’s ability to traverse from each free cell to adjacent free cells. 

The key disadvantage of exact cell decomposition is that the number of cells and, there-
fore, overall path planning computational efficiency depends upon the density and com-
plexity of objects in the environment, just as with road mapbased systems. The key
advantage is a result of this same correlation. In environments that are extremely sparse,
the number of cells will be small, even if the geometric size of the environment is very

Figure 6.4
Example of exact cell decomposition.
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large. Thus the representation will be efficient in the case of large, sparse environments.
Practically speaking, due to complexities in implementation, the exact cell decomposition
technique is used relatively rarely in mobile robot applications, although it remains a solid
choice when a lossless representation is highly desirable, for instance to preserve complete-
ness fully.

Approximate cell decomposition. By contrast, approximate cell decomposition is one of
the most popular techniques for mobile robot path planning. This is partly due to the pop-
ularity of grid-based environmental representations. These grid-based representations are
themselves fixed grid-size decompositions and so they are identical to an approximate cell
decomposition of the environment.

The most popular form of this, shown in figure 5.15 of chapter 5, is the fixed-size cell
decomposition. The cell size is not dependent on the particular objects in an environment
at all, and so narrow passageways can be lost due to the inexact nature of the tessellation.
Practically speaking, this is rarely a problem owing to the very small cell size used (e.g.,
5 cm on each side). The great benefit of fixed size cell decomposition is the low computa-
tional complexity of path planning. 

For example, NF1, often called grassfire, is an efficient and simple-to-implement tech-
nique for finding routes in such fixed-size cell arrays [96]. The algorithm simply employs
wavefront expansion from the goal position outward, marking for each cell its distance to
the goal cell [79]. This process continues until the cell corresponding to the initial robot
position is reached. At this point, the path planner can estimate the robot’s distance to the
goal position as well as recover a specific solution trajectory by simply linking together
cells that are adjacent and always closer to the goal. 

Given that the entire array can be in memory, each cell is only visited once when looking
for the shortest discrete path from the initial position to the goal position. So, the search is
linear in the number of cells only. Thus complexity does not depend on the sparseness and
density of the environment, nor on the complexity of the objects’ shapes in the environ-
ment. Formally, this grassfire transform is simply breadth-first search implemented in the
constrained space of an adjacency array. For more information on breadth-first search and
other graph search techniques, refer to [30].

The fundamental cost of the fixed decomposition approach is memory. For a large envi-
ronment, even when sparse, this grid must be represented in its entirety. Practically, due to
the falling cost of computer memory, this disadvantage has been mitigated in recent years.
The Cye robot is an example of a commercially available robot that performs all its path
planning on a 2D 2 cm fixed-cell decomposition of the environment using a sophisticated
grassfire algorithm that avoids known obstacles and prefers known routes [42].

Figure 5.16 of chapter 5 illustrates a variable-size approximate cell decomposition
method. The free space is externally bounded by a rectangle and internally bounded by
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three polygons. The rectangle is recursively decomposed into smaller rectangles. Each
decomposition generates four identical new rectangles. At each level of resolution only the
cells whose interiors lie entirely in the free space are used to construct the connectivity
graph. Path planning in such adaptive representations can proceed in a hierarchical fashion.
Starting with a coarse resolution, the resolution is reduced until either the path planner iden-
tifies a solution or a limit resolution is attained (e.g,  • size of robot). In contrast to the
exact cell decomposition method, the approximate approach can sacrifice completeness,
but it is mathematically less involving and thus easier to implement. In contrast to the fixed-
size cell decomposition, variable-size cell decomposition will adapt to the complexity of
the environment, and therefore sparse environments will contain appropriately fewer cells,
consuming dramatically less memory.

6.2.1.3   Potential field path planning
Potential field path planning creates a field, or gradient, across the robot’s map that directs
the robot to the goal position from multiple prior positions (see [21]). This approach was
originally invented for robot manipulator path planning and is used often and under many
variants in the mobile robotics community. The potential field method treats the robot as a
point under the influence of an artificial potential field . The robot moves by follow-
ing the field, just as a ball would roll downhill. The goal (a minimum in this space) acts as
an attractive force on the robot and the obstacles act as peaks, or repulsive forces. The
superposition of all forces is applied to the robot, which, in most cases, is assumed to be a
point in the configuration space (see figure 6.5). Such an artificial potential field smoothly
guides the robot toward the goal while simultaneously avoiding known obstacles. 

It is important to note, though, that this is more than just path planning. The resulting
field is also a control law for the robot. Assuming the robot can localize its position with
respect to the map and the potential field, it can always determine its next required action
based on the field. 

The basic idea behind all potential field approaches is that the robot is attracted toward
the goal, while being repulsed by the obstacles that are known in advance. If new obstacles
appear during robot motion, one could update the potential field in order to integrate this
new information. In the simplest case, we assume that the robot is a point, thus the robot’s
orientation  is neglected and the resulting potential field is only 2D . If we assume
a differentiable potential field function , we can find the related artificial force 
acting at the position . 

 (6.1)

where  denotes the gradient vector of  at position .
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Figure 6.5
Typical potential field generated by the attracting goal and two obstacles (see [21]). (a) Configuration
of the obstacles, start (top left) and goal (bottom right). (b) Equipotential plot and path generated by
the field. (c) Resulting potential field generated by the goal attractor and obstacles.
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 (6.2)

The potential field acting on the robot is then computed as the sum of the attractive field
of the goal and the repulsive fields of the obstacles:

 (6.3)

Similarly, the forces can also be separated in a attracting and repulsing part:

 (6.4)

Attractive potential. An attractive potential can, for example, be defined as a parabolic
function.

 (6.5)

where  is a positive scaling factor and  denotes the Euclidean distance
. This attractive potential is differentiable, leading to the attractive force 

 (6.6)

 (6.7)

 (6.8)

that converges linearly toward 0 as the robot reaches the goal.

Repulsive potential. The idea behind the repulsive potential is to generate a force away
from all known obstacles. This repulsive potential should be very strong when the robot is
close to the object, but should not influence its movement when the robot is far from the
object. One example of such a repulsive field is
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 (6.9)

where  is again a scaling factor,  is the minimal distance from q to the object and
 the distance of influence of the object. The repulsive potential function  is positive

or zero and tends to infinity as  gets closer to the object. 
If the object boundary is convex and piecewise differentiable,  is differentiable

everywhere in the free configuration space. This leads to the repulsive force :

 (6.10)

The resulting force  acting on a point robot exposed to the
attractive and repulsive forces moves the robot away from the obstacles and toward the goal
(see figure 6.5). Under ideal conditions, by setting the robot’s velocity vector proportional
to the field force vector, the robot can be smoothly guided toward the goal, similar to a ball
rolling around obstacles and down a hill. 

However, there are some limitations with this approach. One is local minima that appear
dependent on the obstacle shape and size. Another problem might appear if the objects are
concave. This might lead to a situation for which several minimal distances  exist,
resulting in oscillation between the two closest points to the object, which could obviously
sacrifice completeness. For more detailed analyses of potential field characteristics, refer
to [21].

The extended potential field method. Khatib and Chatila proposed the extended poten-
tial field approach [84]. Like all potential field methods this approach makes use of attrac-
tive and repulsive forces that originate from an artificial potential field. However, two
additions to the basic potential field are made: the rotation potential field and the task
potential field.

The rotation potential field assumes that the repulsive force is a function of the distance
from the obstacle and the orientation of the robot relative to the obstacle. This is done using

Urep q( )
1
2
---krep

1
ρ q( )
----------- 1

ρ0

-----– 
  2

  if ρ q( ) ρ0≤

0  if ρ q( ) ρ0≥





=

krep ρ q( )
ρ0 Urep

q
ρ q( )

Frep

Frep q( ) Urep q( )

Frep q( )

∇–

krep
1

ρ q( )
----------- 1

ρ0

-----– 
  1

ρ2 q( )
-------------

q qobstacle–
ρ q( )

---------------------------- if ρ q( ) ρ0≤

0  if ρ q( ) ρ0≥





=

=

F q( ) Fatt q( ) Frep q( )+=

ρ q( )



Planning and Navigation 271

a gain factor which reduces the repulsive force when an obstacle is parallel to the robot’s
direction of travel, since such an object does not pose an immediate threat to the robot’s
trajectory. The result is enhanced wall following, which was problematic for earlier imple-
mentations of potential fields methods.

The task potential field considers the present robot velocity and from that it filters out
those obstacles that should not affect the near-term potential based on robot velocity. Again
a scaling is made, this time of all obstacle potentials when there are no obstacles in a sector
named  in front of the robot. The sector  is defined as the space which the robot will
sweep during its next movement. The result can be smoother trajectories through space. An
example comparing a classical potential field and an extended potential field is depicted in
figure 6.6.

A great many variations and improvements of the potential field methods have been pro-
posed and implemented by mobile roboticists [67, 111]. In most cases, these variations aim
to improve the behavior of potential fields in local minima while also lowering the chances
of oscillations and instability when a robot must move through a narrow space such as a
doorway.

Potential fields are extremely easy to implement, much like the grassfire algorithm
described in section 6.2.1.2. Thus it has become a common tool in mobile robot applica-
tions in spite of its theoretical limitations.

This completes our brief summary of the path-planning techniques that are most popular
in mobile robotics. Of course, as the complexity of a robot increases (e.g., large degree of

Z Z

Figure 6.6
Comparison between a classical potential field and an extended potential field. Image courtesy of
Raja Chatila [84].
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freedom nonholonomics) and, particularly, as environment dynamics becomes more signif-
icant, then the path-planning techniques described above become inadequate for grappling
with the full scope of the problem. However, for robots moving in largely flat terrain, the
mobility decision-making techniques roboticists use often fall under one of the above cat-
egories.

But a path planner can only take into consideration the environment obstacles that are
known to the robot in advance. During path execution the robot’s actual sensor values may
disagree with expected values due to map inaccuracy or a dynamic environment. Therefore,
it is critical that the robot modify its path in real time based on actual sensor values. This is
the competence of obstacle avoidance which we discuss below.

6.2.2   Obstacle avoidance
Local obstacle avoidance focuses on changing the robot’s trajectory as informed by its sen-
sors during robot motion. The resulting robot motion is both a function of the robot’s cur-
rent or recent sensor readings and its goal position and relative location to the goal position.
The obstacle avoidance algorithms presented below depend to varying degrees on the exist-
ence of a global map and on the robot’s precise knowledge of its location relative to the
map. Despite their differences, all of the algorithms below can be termed obstacle avoid-
ance algorithms because the robot’s local sensor readings play an important role in the
robot’s future trajectory. We first present the simplest obstacle avoidance systems that are
used successfully in mobile robotics. The Bug algorithm represents such a technique in that
only the most recent robot sensor values are used, and the robot needs, in addition to current
sensor values, only approximate information regarding the direction of the goal. More
sophisticated algorithms are presented afterward, taking into account recent sensor history,
robot kinematics, and even dynamics.

6.2.2.1   Bug algorithm
The Bug algorithm [101, 102] is perhaps the simplest obstacle avoidance algorithm one
could imagine. The basic idea is to follow the contour of each obstacle in the robot’s way
and thus circumnavigate it.

With Bug1, the robot fully circles the object first, then departs from the point with the
shortest distance toward the goal (figure 6.7). This approach is, of course, very inefficient
but guarantees that the robot will reach any reachable goal.

With Bug2 the robot begins to follow the object’s contour, but departs immediately
when it is able to move directly toward the goal. In general this improved Bug algorithm
will have significantly shorter total robot travel, as shown in figure 6.8. However, one can
still construct situations in which Bug2 is arbitrarily inefficient (i.e., nonoptimal).

A number of variations and extensions of the Bug algorithm exist. We mention one
more, the Tangent Bug [82], which adds range sensing and a local environmental represen-
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tation termed the local tangent graph (LTG). Not only can the robot move more efficiently
toward the goal using the LTG, it can also go along shortcuts when contouring obstacles
and switch back to goal seeking earlier. In many simple environments, Tangent Bug
approaches globally optimal paths.

Figure 6.7
Bug1 algorithm with H1, H2, hit points, and L1, L2, leave points [102].
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Figure 6.8
Bug2 algorithm with H1, H2, hit points, and L1, L2, leave points [102].
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Practical application: example of Bug2. Because of the popularity and simplicity of
Bug2, we present a specific example of obstacle avoidance using a variation of this tech-
nique. Consider the path taken by the robot in figure 6.8. One can characterize the robot’s
motion in terms of two states, one that involves moving toward the goal and a second that
involves moving around the contour of an obstacle. We will call the former state GOAL-
SEEK and the latter WALLFOLLOW. If we can describe the motion of the robot as a function
of its sensor values and the relative direction to the goal for each of these two states, and if
we can describe when the robot should switch between them, then we will have a practical
implementation of Bug2. The following pseudocode provides the highest-level control
code for such a decomposition:

public void bug2(position goalPos){
 boolean atGoal = false;

 while( ! atGoal){
   position robotPos = robot.GetPos(&sonars);
   distance goalDist = getDistance(robotPos, goalPos);
   angle goalAngle = Math.atan2(goalPos, robotPos)-robot.GetAngle();
   velocity forwardVel, rotationVel;

   if(goalDist < atGoalThreshold){
     System.out.println("At Goal!");
     forwardVel = 0;
     rotationVel = 0;
     robot.SetState(DONE);
     atGoal = true;
   }
   else{
     forwardVel = ComputeTranslation(&sonars);
     if(robot.GetState() == GOALSEEK){
        rotationVel = ComputeGoalSeekRot(goalAngle);
        if(ObstaclesInWay(goalAngle, &sonars))
          robot.SetState(WALLFOLLOW);
     }
     if(robot.GetState() == WALLFOLLOW){
        rotationVel = ComputeRWFRot(&sonars);
        if( ! ObstaclesInWay(goalAngle, &sonars))
          robot.SetState(GOALSEEK);
     }
   }
   robot.SetVelocity(forwardVel, rotationVel);
 }
}
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In the ideal case, when encountering an obstacle one would choose between left wall fol-
lowing and right wall following depending on which direction is more promising. In this
simple example we have only right wall following, a simplification for didactic purposes
that ought not find its way into a real mobile robot program.

Now we consider specifying each remaining function in detail. Consider for our pur-
poses a robot with a ring of sonars placed radially around the robot. This imagined robot
will be differential-drive, so that the sonar ring has a clear “front” (aligned with the forward
direction of the robot). Furthermore, the robot accepts motion commands of the form
shown above, with a rotational velocity parameter and a translational velocity parameter.
Mapping these two parameters to individual wheel speeds for each of the two differential
drive chassis’ drive wheels is a simple matter.

There is one condition we must define in terms of the robot’s sonar readings, Obsta-
clesInWay(). We define this function to be true whenever any sonar range reading in
the direction of the goal (within 45 degrees of the goal direction) is short:

private boolean ObstaclesInWay(angle goalAngle, sensorvals sonars) {
int minSonarValue;
minSonarValue=MinRange(sonars, goalAngle 

                             -(pi/4),goalAngle+(pi/4));
return (minSonarValue < 200);

} // end ObstaclesInWay() //

Note that the function ComputeTranslation() computes translational speed
whether the robot is wall-following or heading toward the goal. In this simplified example,
we define translation speed as being proportional to the largest range readings in the robot’s
approximate forward direction:

private int ComputeTranslation(sensorvals sonars) {
int minSonarFront;
minSonarFront = MinRange(sonars, -pi/4.0, pi/4.0);
if (minSonarFront < 200) return 0;
else return (Math.min(500, minSonarFront - 200));

} // end ComputeTranslation() //

There is a marked similarity between this approach and the potential field approach
described in section 6.2.1.3. Indeed, some mobile robots implement obstacle avoidance by
treating the current range readings of the robot as force vectors, simply carrying out vector
addition to determine the direction of travel and speed. Alternatively, many will consider
short-range readings to be repulsive forces, again engaging in vector addition to determine
an overall motion command for the robot.
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When faced with range sensor data, a popular way of determining rotation direction and
speed is to simply subtract left and right range readings of the robot. The larger the differ-
ence, the faster the robot will turn in the direction of the longer range readings. The follow-
ing two rotation functions could be used for our Bug2 implementation:

private int ComputeGoalSeekRot(angle goalAngle) {
if (Math.abs(goalAngle) < pi/10) return 0;
else return (goalAngle * 100);

} // end ComputeGoalSeekRot() //

private int ComputeRWFRot(sensorvals sonars) {
int minLeft, minRight, desiredTurn;
minRight = MinRange(sonars, -pi/2, 0);
minLeft = MinRange(sonars, 0, pi/2);
if (Math.max(minRight,minLeft) < 200) return (400); 

                                         // hard left turn
else {

desiredTurn = (400 - minRight) * 2;
desiredTurn = Math.inttorange(-400, desiredTurn, 400);
return desiredTurn;

} // end else
} // end ComputeRWFRot() //

Note that the rotation function for the case of right wall following combines a general
avoidance of obstacles with a bias to turn right when there is open space on the right,
thereby staying close to the obstacle’s contour. This solution is certainly not the best solu-
tion for implementation of Bug2. For example, the wall follower could do a far better job
by mapping the contour locally and using a PID control loop to achieve and maintain a spe-
cific distance from the contour during the right wall following action.

Although such simple obstacle avoidance algorithms are often used in simple mobile
robots, they have numerous shortcomings. For example, the Bug2 approach does not take
into account robot kinematics, which can be especially important with nonholonomic
robots. Furthermore, since only the most recent sensor values are used, sensor noise can
have a serious impact on real-world performance. The following obstacle avoidance tech-
niques are designed to overcome one or more of these limitations.

6.2.2.2   Vector field histogram
Borenstein, together with Koren, developed the vector field histogram (VFH) [43]. Their
previous work, which was concentrated on potential fields [92], was abandoned due to the
method’s instability and inability to pass through narrow passages. Later, Borenstein,
together with Ulrich, extended the VFH algorithm to yield VFH+ [150] and VFH*[149].
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One of the central criticisms of Bug-type algorithms is that the robot’s behavior at each
instant is generally a function of only its most recent sensor readings. This can lead to unde-
sirable and yet preventable problems in cases where the robot’s instantaneous sensor read-
ings do not provide enough information for robust obstacle avoidance. The VFH techniques
overcome this limitation by creating a local map of the environment around the robot. This
local map is a small occupancy grid, as described in section 5.7 populated only by relatively
recent sensor range readings. For obstacle avoidance, VFH generates a polar histogram as
shown in figure 6.9. The x-axis represents the angle  at which the obstacle was found and
the y-axis represents the probability  that there really is an obstacle in that direction based
on the occupancy grid’s cell values.

From this histogram a steering direction is calculated. First all openings large enough
for the vehicle to pass through are identified. Then a cost function is applied to every such
candidate opening. The passage with the lowest cost is chosen. The cost function  has
three terms:

 (6.11)

target_direction = alignment of the robot path with the goal;

wheel_orientation = difference between the new direction and the current wheel orien-
tation;

previous_direction = difference between the previously selected direction and the new
direction.

The terms are calculated such that a large deviation from the goal direction leads to a big
cost in the term “target direction”. The parameters , ,  in the cost function  tune the
behavior of the robot. For instance, a strong goal bias would be expressed with a large value
for . For a complete definition of the cost function, refer to [92]. 

-180° 180°

Figure 6.9
Polar histogram [93].
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In the VFH+ improvement one of the reduction stages takes into account a simplified
model of the moving robot’s possible trajectories based on its kinematic limitations (e.g.,
turning radius for an Ackerman vehicle). The robot is modeled to move in arcs or straight
lines. An obstacle thus blocks all of the robot’s allowable trajectories which pass through
the obstacle (figure 6.10a). This results in a masked polar histogram where obstacles are
enlarged so that all kinematically blocked trajectories are properly taken into account (fig-
ure 6.10c).

6.2.2.3   The bubble band technique
This idea is an extension for nonholonomic vehicles of the elastic band concept suggested
by Khatib and Quinlan [86]. The original elastic band concept applied only to holonomic

Figure 6.10
Example of blocked directions and resulting polar histograms [54]. (a) Robot and blocking obstacles.
(b) Polar histogram. (b) Masked polar histogram.
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vehicles and so we focus only on the bubble band extension made by Khatib, Jaouni, Cha-
tila, and Laumod [85].

A bubble is defined as the maximum local subset of the free space around a given con-
figuration of the robot that which can be traveled in any direction without collision. The
bubble is generated using a simplified model of the robot in conjunction with range infor-
mation available in the robot’s map. Even with a simplified model of the robot’s geometry,
it is possible to take into account the actual shape of the robot when calculating the bubble’s
size (figure 6.11). Given such bubbles, a band or string of bubbles can be used along the
trajectory from the robot’s initial position to its goal position to show the robot’s expected
free space throughout its path (see figure 6.12).

Clearly, computing the bubble band requires a global map and a global path planner.
Once the path planner’s initial trajectory has been computed and the bubble band is calcu-
lated, then modification of the planned trajectory ensues. The bubble band takes into
account forces from modeled objects and internal forces. These internal forces try to mini-
mize the “slack” (energy) between adjacent bubbles. This process, plus a final smoothing
operation, makes the trajectory smooth in the sense that the robot’s free space will change
as smoothly as possible during path execution.

Of course, so far this is more akin to path optimization than obstacle avoidance. The
obstacle avoidance aspect of the bubble band strategy comes into play during robot motion.
As the robot encounters unforeseen sensor values, the bubble band model is used to deflect
the robot from its originally intended path in a way that minimizes bubble band tension.

An advantage of the bubble band technique is that one can account for the actual dimen-
sions of the robot. However, the method is most applicable only when the environment con-
figuration is well-known ahead of time, just as with off-line path-planning techniques.

Figure 6.11
Shape of the bubbles around the vehicle (courtesy of Raja Chatila [85]).
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6.2.2.4   Curvature velocity techniques

The basic curvature velocity approach. The curvature velocity approach (CVM) from
Simmons [135] enables the actual kinematic constraints and even some dynamic con-
straints of the robot to be taken into account during obstacle avoidance, which is an advan-
tage over more primitive techniques. CVM begins by adding physical constraints from the
robot and the environment to a velocity space. The velocity space consists of rotational
velocity  and translational velocity , thus assuming that the robot only travels along arcs
of circles with curvature .

Two types of constraints are identified: those derived from the robot’s limitations in
acceleration and speed, typically , ; and, second, the
constraints from obstacles blocking certain  and  values due to their positions. The
obstacles begin as objects in a Cartesian grid but are then transformed to the velocity space
by calculating the distance from the robot position to the obstacle following some constant
curvature robot trajectory, as shown in figure 6.13. Only the curvatures that lie within 
and  are considered since that curvature space will contain all legal trajectories.

To achieve real-time performance the obstacles are approximated by circular objects
and the contours of the objects are divided into few intervals. The distance from an endpoint
of an interval to the robot is calculated and in between the endpoints the distance function
is assumed to be constant. 

The final decision of a new velocity (  and ) is made by an objective function. This
function is only evaluated on that part of the velocity space that fulfills the kinematic and

Figure 6.12
A typical bubble band (Courtesy of Raja Chatila [85]).
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dynamic constraints as well as the constraints due to obstacles. The use of a Cartesian grid
for initial obstacle representation enables straightforward sensor fusion if, for instance, a
robot is equipped with multiple types of ranging sensors. 

CVM takes into consideration the dynamics of the vehicle in useful manner. However a
limitation of the method is the circular simplification of obstacle shape. In some environ-
ments this is acceptable while, in other environments, such a simplification can cause seri-
ous problems. The CVM method can also suffer from local minima since no a priori
knowledge is used by the system.

The lane curvature method.  Ko and Simmons presented an improvement of the CVM
which they named the lane curvature method, (LCM) [87] based on their experiences with
the shortcomings of CVM. CVM had difficulty guiding the robot through intersections of
corridors. The problems stemmed from the approximation that the robot moves only along
fixed arcs, whereas in practice the robot can change direction many times before reaching
an obstacle.

LCM calculates a set of desired lanes, trading off lane length and lane width to the clos-
est obstacle. The lane with the best properties is chosen using an objective function. The
local heading is chosen in such way that the robot will transition to the best lane if it is not
in that lane already.

Experimental results have demonstrated better performance as compared to CVM. One
caveat is that the parameters in the objective function must be chosen carefully to optimize
system behavior.

Figure 6.13
Tangent curvatures for an obstacle (from [135]).
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6.2.2.5   Dynamic window approaches
Another technique for taking into account robot kinematics constraints is the dynamic
window obstacle avoidance method. A simple but very effective dynamic model gives this
approach its name. Two such approaches are represented in the literature. The dynamic
window approach [69] of Fox, Burgard, and Thrun, and the global dynamic window
approach [44] of Brock and Khatib. 

The local dynamic window approach. In the local dynamic window approach the kine-
matics of the robot is taken into account by searching a well-chosen velocity space. The
velocity space is all possible sets of tuples ( , ) where  is the velocity and  is the
angular velocity. The approach assumes that robots move only in circular arcs representing
each such tuple, at least during one timestamp.

Given the current robot speed, the algorithm first selects a dynamic window of all tuples
( , ) that can be reached within the next sample period, taking into account the acceler-
ation capabilities of the robot and the cycle time. The next step is to reduce the dynamic
window by keeping only those tuples that ensure that the vehicle can come to a stop before
hitting an obstacle. The remaining velocities are called admissible velocities. In figure 6.14,
a typical dynamic window is represented. Note that the shape of the dynamic window is
rectangular, which follows from the approximation that the dynamic capabilities for trans-
lation and rotation are independent.

A new motion direction is chosen by applying an objective function to all the admissible
velocity tuples in the dynamic window. The objective function prefers fast forward motion,

v ω v ω

v ω

Figure 6.14
The dynamic window approach (courtesy of Dieter Fox [69]). The rectangular window shows the
possible speeds  and the overlap with obstacles in configuration space.v ω,( )
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maintenance of large distances to obstacles and alignment to the goal heading. The objec-
tive function O has the form

 (6.12)

heading = Measure of progress toward the goal location;

velocity = Forward velocity of the robot → encouraging fast movements;

dist = Distance to the closest obstacle in the trajectory.

The global dynamic window approach. The global dynamic window approach adds, as
the name suggests, global thinking to the algorithm presented above. This is done by adding
NF1, or grassfire, to the objective function O presented above (see section 6.2.1.2 and
figure 6.15). Recall that NF1 labels the cells in the occupancy grid with the total distance
L to the goal. To make this faster the global dynamic window approach calculates the NF1
only on a selected rectangular region which is directed from the robot toward the goal. The
width of the region is enlarged and recalculated if the goal cannot be reached within the
constraints of this chosen region.

This allows the global dynamic window approach to achieve some of the advantages of
global path planning without complete a priori knowledge. The occupancy grid is updated
from range measurements as the robot moves in the environment. The NF1 is calculated for
every new updated version. If the NF1 cannot be calculated due to the fact that the robot is
surrounded by obstacles, the method degrades to the dynamic window approach. This
keeps the robot moving so that a possible way out may be found and NF1 can resume.

O a heading v ω,( ) b velocity v ω,( ) c dist v ω,( )⋅+⋅+⋅=

Figure 6.15
An example of the distance transform and the resulting path as it is generated by the NF1 function. S,
start; G, goal.
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The global dynamic window approach promises real-time, dynamic constraints, global
thinking, and minimal free obstacle avoidance at high speed. An implementation has been
demonstrated with an omnidirectional robot using a 450 MHz on-board PC. This system
produced a cycle frequency of about 15 Hz when the occupancy grid was m with
a 5 cm resolution. Average robot speed in the tests was greater than 1 m/s.

6.2.2.6   The Schlegel approach to obstacle avoidance
Schlegel [128] presents an approach that considers the dynamics as well as the actual shape
of the robot. The approach is adopted for raw laser data measurements and sensor fusion
using a Cartesian grid to represent the obstacles in the environment. Real-time performance
is achieved by use of precalculated lookup tables. 

As with previous methods we have described, the basic assumption is that a robot moves
in trajectories built up by circular arcs, defined as curvatures . Given a certain curvature

 Schlegel calculates the distance  to collision between a single obstacle point  in
the Cartesian grid and the robot, depicted in figure 6.16. Since the robot is allowed to be
any shape this calculation is time consuming and the result is therefore precalculated and
stored in a lookup table.

For example, the search space window  is defined for a differential-drive robot to be
all the possible speeds of the left and right wheels, . The dynamic constraints of the
robot are taken into account by refining  to only those values which are reachable within
the next timestep, given the present robot motion. Finally, an objective function chooses
the best speed and direction by trading off goal direction, speed, and distance until colli-
sion.

During testing Schlegel used a wavefront path planner. Two robot chassis were used,
one with synchro-drive kinematics and one with tricycle kinematics. The tricycle-drive

30 30×
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Figure 6.16
Distances  resulting from the curvature , when the robot rotates around  (from [128]).li ic M
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robot is of particular interest because it was a forklift with a complex shape that had a sig-
nificant impact on obstacle avoidance. Thus the demonstration of reliable obstacle avoid-
ance with the forklift is an impressive result. Of course, a disadvantage of this approach is
the potential memory requirements for the lookup table. In their experiments, the authors
used lookup tables of up to 2.5 Mb using a  m Cartesian grid with a resolution of
10 cm and 323 different curvatures.

6.2.2.7   The ASL approach
The Autonomous Systems Lab (ASL) at the Swiss Federal Institute of Technology devel-
oped an obstacle avoidance method [122] for a mass exhibition [132] that required mobile
robots to move through dense crowds and also ensure a certain flow of visitors. It merges
three approaches in order to have a system that moves smoothly without stopping for
replanning and is able to carefully nudge its way through when it is safe to do so. It is a
local path-planning and obstacle avoidance method receiving its input in the form of way-
points from higher levels. An overview is given in figure 6.17.

6 6×

Figure 6.17
Flow diagram of the ASL approach [122].
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Local path planning is performed by NF1. The resulting path is converted to an elastic
band that does not take into account kinematics, taking advantage of the fact that the octag-
onal robot used in the exhibition can turn on the spot most of the time. This keeps path
updates as simple as possible. An enhanced dynamic window then takes care of moving the
robot along the path.

6.2.2.8   Nearness diagram
Attempting to close a model fidelity gap in obstacle avoidance methods, the nearness dia-
gram (ND) [107] can be considered to have some similarity to a VFH but solves several of
its shortcomings, especially in very cluttered spaces. It was also used in [108] to take into
account more precise geometric, kinematic, and dynamic constraints. This was achieved by
breaking the problem down into generating the most promising direction of travel with the
sole constraint a circular robot, then adapting this to the kinematic and dynamic constraints
of the robot, followed by a correction for robot shape if is noncircular (only rectangular
shapes were supported in the original publication). Global reasoning was added to the
approach and termed the global nearness diagram (GND) in [110], somewhat similar to the
GDWA extension to the DWA, but based on a workspace representation (instead of con-
figuration space) and updating free space in addition to obstacle information.

6.2.2.9   Gradient method
Realizing that current computer technology allows fast recalculation of wavefront propa-
gation techniques, the gradient method [89] formulates a grid-based global path planning
that takes into account closeness to obstacles and allows generating continuous interpola-
tions of the gradient direction at any given point in the grid. The NF1 is a special case of
the proposed algorithm, which calculates a navigation function at each timestep and uses
the resulting gradient information to drive the robot toward the goal on a smooth path and
not grazing obstacles unless necessary.

6.2.2.10   Adding dynamic constraints
Attempting to address the lack of dynamic models in most of the obstacle avoidance
approaches discussed above, a new kind of space representation was proposed by Minguez,
Montano, and Khatib in [109]. The ego-dynamic space is equally applicable to workspace
and configuration space methods. It transforms obstacles into distances that depend on the
braking constraints and sampling time of the underlying obstacle avoidance method. In
combination with the proposed spatial window (PF) to represent acceleration capabilities,
the approach was tested in conjunction with the ND and PF methods and gives satisfactory
results for circular holonomic robots, with plans to extend it to nonholonomic, noncircular
architectures.
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6.2.2.11   Other approaches
The approaches described above are some of the most popularly referenced obstacle avoid-
ance systems. There are, however, a great many additional obstacle avoidance techniques
in the mobile robotics community. For example Tzafestas and Tzafestas [148] provide an
overview of fuzzy and neurofuzzy approaches to obstacle avoidance. Inspired by nature,
Chen and Quinn [56] present a biological approach in which they replicate the neural net-
work of a cockroach. The network is then applied to a model of a four-wheeled vehicle.

The Liapunov functions form a well known theory that can be used to prove stability for
nonlinear systems. In the paper of Vanualailai, Nakagiri, and Ha [153] the Liapunov func-
tions are used to implement a control strategy for two-point masses moving in a known
environment. All obstacles are defined as antitargets with an exact position and a circular
shape. The antitargets are then used when building up the control laws for the system. How-
ever, this complex mathematical model has not been tested on a real-world robot to our
knowledge.

6.2.2.12   Overview
Table 6.1 gives an overview on the different approaches for obstacle avoidance.

Table 6.1 
Overview of the most popular obstacle avoidance algorithms
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Table 6.1 
Overview of the most popular obstacle avoidance algorithms
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6.3 Navigation Architectures

Given techniques for path planning, obstacle avoidance, localization, and perceptual inter-
pretation, how do we combine all of these into one complete robot system for a real-world
application? One way to proceed would be to custom-design an application-specific, mono-
lithic software system that implements everything for a specific purpose. This may be effi-
cient in the case of a trivial mobile robot application with few features and even fewer
planned demonstrations. But for any sophisticated and long-term mobile robot system, the
issue of mobility architecture should be addressed in a principled manner. The study of nav-
igation architectures is the study of principled designs for the software modules that con-
stitute a mobile robot navigation system. Using a well-designed navigation architecture has
a number of concrete advantages:

6.3.1   Modularity for code reuse and sharing 
Basic software engineering principles embrace software modularity, and the same general
motivations apply equally to mobile robot applications. But modularity is of even greater
importance in mobile robotics because in the course of a single project the mobile robot
hardware or its physical environmental characteristics can change dramatically, a challenge
most traditional computers do not face. For example, one may introduce a Sick laser
rangefinder to a robot that previously used only ultrasonic rangefinders. Or one may test an
existing navigator robot in a new environment where there are obstacles that its sensors
cannot detect, thereby demanding a new path-planning representation. 

We would like to change part of the robot’s competence without causing a string of side
effects that force us to revisit the functioning of other robot competences. For instance we
would like to retain the obstacle avoidance module intact, even as the particular ranging
sensor suite changes. In a more extreme example, it would be ideal if the nonholonomic
obstacle avoidance module could remain untouched even when the robot’s kinematic struc-
ture changes from a tricycle chassis to a differential-drive chassis.

6.3.2   Control localization 
Localization of robot control is an even more critical issue in mobile robot navigation. The
basic reason is that a robot architecture includes multiple types of control functionality
(e.g., obstacle avoidance, path planning, path execution, etc.). By localizing each function-
ality to a specific unit in the architecture, we enable individual testing as well as a princi-
pled strategy for control composition. For example, consider collision avoidance. For
stability in the face of changing robot software, as well as for focused verification that the
obstacle avoidance system is correctly implemented, it is valuable to localize all software
related to the robot’s obstacle avoidance process. At the other extreme, high-level planning
and task-based decision-making are required for robots to perform useful roles in their
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environment. It is also valuable to localize such high-level decision-making software,
enabling it to be tested exhaustively in simulation and thus verified even without a direct
connection to the physical robot. A final advantage of localization is associated with learn-
ing. Localization of control can enable a specific learning algorithm to be applied to just
one aspect of a mobile robot’s overall control system. Such targeted learning is likely to be
the first strategy that yields successful integration of learning and traditional mobile robot-
ics.

The advantages of localization and modularity prove a compelling case for the use of
principled navigation architectures. 

One way to characterize a particular architecture is by its decomposition of the robot’s
software. There are many favorite robot architectures, especially when one considers the
relationship between artificial intelligence level decision making and lower-level robot
control. For descriptions of such high-level architectures, refer to [2] and [26]. Here we
concentrate on navigation competence. For this purpose, two decompositions are particu-
larly relevant: temporal decomposition and control decomposition. In section 6.3.3 we
define these two types of decomposition, then present an introduction to behaviors, which
are a general tool for implementing control decomposition. Then, in section 6.3.4 we
present three types of navigation architectures, describing for each architecture an imple-
mented mobile robot case study.

6.3.3   Techniques for decomposition
Decompositions identify axes along which we can justify discrimination of robot software
into distinct modules. Decompositions also serve as a way to classify various mobile robots
into a more quantitative taxonomy. Temporal decomposition distinguishes between real-
time and non real-time demands on mobile robot operation. Control decomposition identi-
fies the way in which various control outputs within the mobile robot architecture combine
to yield the mobile robot’s physical actions. Below we describe each type of decomposition
in greater detail.

6.3.3.1   Temporal decomposition
A temporal decomposition of robot software distinguishes between processes that have
varying real-time and non real-time demands. Figure 6.18 depicts a generic temporal
decomposition for navigation. In this figure, the most real-time processes are shown at the
bottom of the stack, with the highest category being occupied by processes with no real-
time demands. 

The lowest level in this example captures functionality that must proceed with a guar-
anteed fast cycle time, such as a 40 Hz bandwidth. In contrast, a quasi real-time layer may
capture processes that require, for example, 0.1 second response time, with large allowable
worst-case individual cycle times. A tactical layer can represent decision-making that
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affects the robot’s immediate actions and is therefore subject to some temporal constraints,
while a strategic or off-line layer represents decisions that affect the robot’s behavior over
the long term, with few temporal constraints on the module’s response time.

Four important, interrelated trends correlate with temporal decomposition. These are not
set in stone; there are exceptions. Nevertheless, these general properties of temporal
decompositions are enlightening:

Sensor response time. A particular module’s sensor response time can be defined as the
amount of time between acquisition of a sensor-based event and a corresponding change in
the output of the module. As one moves up the stack in figure 6.18 the sensor response time
tends to increase. For the lowest-level modules, the sensor response time is often limited
only by the raw processor and sensor speeds. At the highest-level modules, sensor response
can be limited by slow and deliberate decision-making processes.

Temporal depth. Temporal depth is a useful concept applying to the temporal window
that affects the module’s output, both backward and forward in time. Temporal horizon
describes the amount of look ahead used by the module during the process of choosing an
output. Temporal memory describes the historical time span of sensor input that is used by
the module to determine the next output. Lowest-level modules tend to have very little tem-
poral depth in both directions, whereas the deliberative processes of highest-level modules
make use of a large temporal memory and consider actions based on their long-term con-
sequences, making note of large temporal horizons.

Figure 6.18
Generic temporal decomposition of a navigation architecture.
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Spatial locality. Hand in hand with temporal span, the spatial impact of layers increases
dramatically as one moves from low-level modules to high-level modules. Real-time mod-
ules tend to control wheel speed and orientation, controlling spatially localized behavior.
High-level strategic decision-making has little or no bearing on local position, but informs
global position far into the future.

Context specificity. A module makes decisions as a function not only of its immediate
inputs but also as a function of the robot’s context as captured by other variables, such as
the robot’s representation of the environment. Lowest-level modules tend to produce out-
puts directly as a result of immediate sensor inputs, using little context and therefore being
relatively context insensitive. Highest-level modules tend to exhibit very high context spec-
ificity. For strategic decision-making, given the same sensor values, dramatically different
outputs are nevertheless conceivable depending on other contextual parameters.

An example demonstrating these trends is depicted in figure 6.19, which shows a tem-
poral decomposition of a simplistic navigation architecture into four modules. At the lowest
level the PID control loop provides feedback to control motor speeds. An emergency stop
module uses short-range optical sensors and bumpers to cut current to the motors when it
predicts an imminent collision. Knowledge of robot dynamics means that this module by
nature has a greater temporal horizon than the PID module. The next module uses longer-
range laser rangefinding sensor returns to identify obstacles well ahead of the robot and
make minor course deviations. Finally, the path planner module takes the robot’s initial and
goal positions and produces an initial trajectory for execution, subject to change based on
actual obstacles that the robot collects along the way.

Figure 6.19
Sample four-level temporal decomposition of a simple navigating mobile robot. The column on the
right indicates realistic bandwidth values for each module.
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Note that the cycle time, or bandwidth, of the modules changes by orders of magnitude
between adjacent modules. Such dramatic differences are common in real navigation archi-
tectures, and so temporal decomposition tends to capture a significant axis of variation in a
mobile robot’s navigation architecture.

6.3.3.2   Control decomposition
Whereas temporal decomposition discriminates based on the time behavior of software
modules, control decomposition identifies the way in which each module’s output contrib-
utes to the overall robot control outputs. Presentation of control decomposition requires the
evaluator to understand the basic principles of discrete systems representation and analysis.
For a lucid introduction to the theory and formalism of discrete systems, see [17, 71].

Consider the robot algorithm and the physical robot instantiation (i.e., the robot form
and its environment) to be members of an overall system whose connectivity we wish to
examine. This overall system  is comprised of a set  of modules, each module  con-
nected to other modules via inputs and outputs. The system is closed, meaning that the input
of every module  is the output of one or more modules in . Each module has precisely
one output and one or more inputs. The one output can be connected to any number of other
modules inputs. 

We further name a special module  in  to represent the physical robot and environ-
ment. Usually by  we represent the physical object on which the robot algorithm is
intended to have impact, and from which the robot algorithm derives perceptual inputs. The
module  contains one input and one output line. The input of  represents the complete
action specification for the physical robot. The output of  represents the complete percep-
tual output to the robot. Of course the physical robot may have many possible degrees of
freedom and, equivalently, many discrete sensors. But for this analysis we simply imagine
the entire input/output vector, thus simplifying r to just one input and one output. For sim-
plicity we will refer to the input of  as  and to the robot’s sensor readings . From the
point of view of the rest of the control system, the robot’s sensor values  are inputs, and
the robot’s actions are the outputs, explaining our choice of and .

Control decomposition discriminates between different types of control pathways
through the portion of this system comprising the robot algorithm. At one extreme, depicted
in figure 6.20 we can consider a perfectly linear, or sequential control pathway.
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Figure 6.20
Example of a pure serial decomposition.
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Such a serial system uses the internal state of all associated modules and the value of the
robot’s percept  in a sequential manner to compute the next robot action . A pure serial
architecture has advantages relating to predictability and verifiability. Since the state and
outputs of each module depend entirely on the inputs it receives from the module upstream,
the entire system, including the robot, is a single well-formed loop. Therefore, the overall
behavior of the system can be evaluated using well-known discrete forward simulation
methods.

Figure 6.21 depicts the extreme opposite of pure serial control, a fully parallel control
architecture. Because we choose to define r as a module with precisely one input, this par-
allel system includes a special module  that provides a single output for the consumption
of . Intuitively, the fully parallel system distributes responsibility for the system’s control
output  across multiple modules, possibly simultaneously. In a pure sequential system,
the control flow is a linear sequence through a string of modules. Here, the control flow
contains a combination step at which point the result of multiple modules may impact 
in arbitrary ways. 

Thus parallelization of control leads to an important question: how will the output of
each component module inform the overall decision concerning the value of ? One
simple combination technique is temporal switching. In this case, called switched parallel,
the system has a parallel decomposition but at any particular instant in time the output 
can be attributed to one specific module. The value of  can of course depend on a differ-
ent module at each successive time instant, but the instantaneous value of  can always be
determined based on the functions of a single module. For instance, suppose that a robot
has an obstacle avoidance module and a path-following module. One switched control
implementation may involve execution of the path-following recommendation whenever
the robot is more than 50 cm from all sensed obstacles and execution of the obstacle avoid-
ance recommendation when any sensor reports a range closer than 50 cm. 

I O

Figure 6.21
Example of a pure parallel decomposition.
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The advantage of such switched control is particularly clear if switching is relatively
rare. If the behavior of each module is well understood, then it is easy to characterize the
behavior of the switched control robot: it will obstacle avoid at times, and it will path-
follow other times. If each module has been tested independently, there is a good chance
the switched control system will also perform well. Two important disadvantages must be
noted. First, the overall behavior of the robot can become quite poor if the switching is itself
a high-frequency event. The robot may be unstable in such cases, switching motion modes
so rapidly as to dramatically devolve into behavior that is neither path-following nor obsta-
cle avoiding. Another disadvantage of switched control is that the robot has no path-follow-
ing bias when it is obstacle avoiding (and vice versa). Thus in cases where control ought to
mix recommendations from among multiple modules, the switched control methodology
fails.

In contrast, the much more complex mixed parallel model allows control at any given
time to be shared between multiple modules. For example, the same robot could take the
obstacle avoidance module’s output at all times, convert it to a velocity vector, and combine
it with the path-following module’s output using vector addition. Then the output of the
robot would never be due to a single module, but would result from the mathematical com-
bination of both modules outputs. Mixed parallel control is more general than switched
control, but by that token it is also a more challenging technique to use well. Whereas with
switched control most poor behavior arises out of inopportune switching behavior, in
mixed control the robot’s behavior can be quite poor even more readily. Combining multi-
ple recommendations mathematically does not guarantee an outcome that is globally supe-
rior, just as combining multiple vectors when deciding on a swerve direction to avoid an
obstacle can result in the very poor decision of straight ahead. Thus great care must be taken
in mixed parallel control implementations to fashion mixture formulas and individual
module specifications that lead to effective mixed results.

Both the switched and mixed parallel architectures are popular in the behavior-based
robotics community. Arkin [2] proposes the motor-schema architecture in which behaviors
(i.e., modules in the above discussion) map sensor value vectors to motor value vectors.
The output of the robot algorithm is generated, as in mixed parallel systems, using a linear
combination of the individual behavior outputs. In contrast, Maes [103, 104] produces a
switched parallel architecture by creating a behavior network in which a behavior is chosen
discretely by comparing and updating activation levels for each behavior. The subsumption
architecture of Brooks [45] is another example of a switched parallel architecture, although
the active model is chosen via a suppression mechanism rather than activation level. For a
further discussion, see [2].

One overall disadvantage of parallel control is that verification of robot performance can
be extremely difficult. Because such systems often include truly parallel, multithreaded
implementations, the intricacies of robot-environment interaction and sensor timing



298 Chapter 6

required to properly represent all conceivable module-module interactions can be difficult
or impossible to simulate. So, much testing in the parallel control community is performed
empirically using physical robots. 

An important advantage of parallel control is its biomimetic aspect. Complex organic
organisms benefit from large degrees of true parallelism (e.g., the human eye), and one goal
of the parallel control community is to understand this biologically common strategy and
leverage it to advantage in robotics.

6.3.4   Case studies: tiered robot architectures
We have described temporal and control decompositions of robot architecture, with the
common theme that the roboticist is always composing multiple modules together to make
up that architecture. Let us turn again toward the overall mobile robot navigation task with
this understanding in mind. Clearly, robot behaviors play an important role at the real-time
levels of robot control, for example, path-following and obstacle avoidance. At higher tem-
poral levels, more tactical tasks need to modulate the activation of behaviors, or modules,
in order to achieve robot motion along the intended path. Higher still, a global planner
could generate paths to provide tactical tasks with global foresight.

In chapter 1, we introduced a functional decomposition showing such modules of a
mobile robot navigator from the perspective of information flow. The relevant figure is
shown here again as figure 6.22.

In such a representation, the arcs represent aspects of real-time and non real-time com-
petence. For instance, obstacle avoidance requires little input from the localization module
and consists of fast decisions at the cognition level followed by execution in motion con-
trol. In contrast, PID position feedback loops bypass all high-level processing, tying the
perception of encoder values directly to lowest-level PID control loops in motion control.

Figure 6.22
The basic architectural example used throughout this text.
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The trajectory of arcs through the four software modules is provides temporal information
in such a representation.

Using the tools of this chapter, we can now present this same architecture from the per-
spective of a temporal decomposition of functionality. This is particularly useful because
we wish to discuss the interaction of strategic, tactical, and real-time processes in a naviga-
tion system.

Figure 6.23 depicts a generic tiered architecture based on the approach of Pell and col-
leagues [120] used in designing an autonomous spacecraft, Deep Space One. This figure is
similar to figure 6.19 in presenting a temporal decomposition of robot competence. How-
ever, the boundaries separating each module from adjacent modules are specific to robot
navigation.

Path planning embodies strategic-level decision-making for the mobile robot. Path
planning uses all available global information in non real time to identify the right sequence
of local actions for the robot. At the other extreme, real-time control represents compe-
tences requiring high bandwidth and tight sensor-effector control loops. At its lowest level,
this includes motor velocity PID loops. Above those, real-time control also includes low-
level behaviors that may form a switch or mixed parallel architecture.

In between the path planner and real-time control tiers sits the executive, which is
responsible for mediating the interface between planning and execution. The executive is
responsible for managing the activation of behaviors based on information it receives from
the planner. The executive is also responsible for recognizing failure, saving (placing the
robot in a stable state), and even re-initiating the planner as necessary. It is the executive in

Figure 6.23
A general tiered mobile robot navigation architecture based on a temporal decomposition. 
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this architecture that contains all tactical decision-making as well as frequent updates of the
robot’s short-term memory, as is the case for localization and mapping.

It is interesting to note the similarity between this general architecture, used in many
specialized forms in mobile robotics today, and the architecture implemented by Shakey,
one of the very first mobile robots, in 1969 [115]. Shakey had LLA (low-level actions) that
formed the lowest architectural tier. The implementation of each LLA included the use of
sensor values in a tight loop just as in today’s behaviors. Above that, the middle architec-
tural tier included the ILA (intermediate-level actions), which would activate and deactivate
LLA as required based on perceptual feedback during execution. Finally, the topmost tier
for Shakey was STRIPS (Stanford Research Institute Planning System), which provided
global look ahead and planning, delivering a series of tasks to the intermediate executive
layer for execution.

Although the general architecture shown in figure 6.23 is useful as a model for robot
navigation, variant implementations in the robotics community can be quite different.
Below, we present three particular versions of the general tiered architecture, describing for
each version at least one real-world mobile robot implementation. For broader discussions
of various robot architectures, see [26].

6.3.4.1   Off-line planning
Certainly the simplest possible integration of planning and execution is no integration at
all. Consider figure 6.24, in which there are only two software tiers. In such navigation
architectures, the executive does not have a planner at its disposal, but must contain a priori
all relevant schemes for traveling to desired destinations.

The strategy of leaving out a planner altogether is of course extremely limiting. Moving
such a robot to a new environment demands a new instantiation of the navigation system,

Figure 6.24
A two-tiered architecture for off-line planning. 
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and so this method is not useful as a general solution to the navigation problem. However
such robotic systems do exist, and this method can be useful in two cases:

Static route-based applications. In mobile robot applications where the robot operates
in a completely static environment using a route-based navigation system, it is conceivable
that the number of discrete goal positions is so small that the environmental representation
can directly contain paths to all desired goal points. For example, in factory or warehouse
settings, a robot may travel a single looping route by following a buried guidewire. In such
industrial applications, path-planning systems are sometimes altogether unnecessary when
a precompiled set of route-based solutions can be easily generated by the robot program-
mers. The Chips mobile robot is an example of a museum robot that also uses this architec-
ture (118). Chips operates in a unidirectional looping track defined by its colored
landmarks. Furthermore, it has only twelve discrete locations at which it is allowed to stop.
Due to the simplicity of this environmental model, Chips contains an executive layer that
directly caches the path required to reach each goal location rather than a generic map with
which a path planner could search for solution paths.

Extreme reliability demands. Not surprisingly, another reason to avoid on-line planning
is to maximize system reliability. Since planning software can be the most sophisticated
portion of a mobile robot’s software system, and since in theory at least planning can take
time exponential to the complexity of the problem, imposing hard temporal constraints on
successful planning is difficult if not impossible. By computing all possible solutions off-
line, the industrial mobile robot can trade versatility for effective constant-time planning
(while sacrificing significant memory of course). A real-world example of off-line plan-
ning for this reason can be seen in the contingency plans designed for space shuttle flights.
Instead of requiring astronauts to problem-solve on-line, thousands of conceivable issues
are postulated on Earth, and complete conditional plans are designed and published in
advance of the Shuttle flights. The fundamental goal is to provide an absolute upper limit
on the amount of time that passes before the astronauts begin resolving the problem, sacri-
ficing a great deal of ground time and paperwork to achieve this performance guarantee.

6.3.4.2   Episodic planning
The fundamental information-theoretic disadvantage of planning off-line is that, during
run-time, the robot is sure to encounter perceptual inputs that provide information, and it
would be rational to take this additional information into account during subsequent exe-
cution. Episodic planning is the most popular method in mobile robot navigation today
because it solves this problem in a computationally tractable manner.

As shown in figure 6.25, the structure is three-tiered as in the general architecture of
figure 6.23. The intuition behind the role of the planner is as follows. Planning is compu-
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tationally intensive, and therefore planning too frequently would have serious disadvan-
tages. But the executive is in an excellent position to identify when it has encountered
enough information (e.g., through feature extraction) to warrant a significant change in
strategic direction. At such points, the executive will invoke the planner to generate, for
example, a new path to the goal.

Perhaps the most obvious condition that triggers replanning is detection of a blockage
on the intended travel path. For example, in [129] the path-following behavior returns fail-
ure if it fails to make progress for a number of seconds. The executive receives this failure
notification, modifies the short-term occupancy grid representation of the robot’s surround-
ings, and launches the path planner in view of this change to the local environment map.

A common technique to delay planning until more information has been acquired is
called deferred planning. This technique is particularly useful in mobile robots with
dynamic maps that become more accurate as the robot moves. For example, the commer-
cially available Cye robot can be given a set of goal locations. Using its grassfire breadth-
first planning algorithm, this robot will plot a detailed path to the closest goal location only
and will execute this plan. Upon reaching this goal location, its map will have changed
based on the perceptual information extracted during motion. Only then will Cye’s execu-
tive trigger the path planner to generate a path from its new location to the next goal loca-
tion.

The robot Pygmalion implements an episodic planning architecture along with a more
sophisticated strategy when encountering unforeseen obstacles in its way [36, 122]. When
the lowest-level behavior fails to make progress, the executive attempts to find a way past
the obstacle by turning the robot 90 degrees and trying again. This is valuable because the

Figure 6.25
A three-tiered episodic planning architecture.
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robot is not kinematically symmetric, and so servoing through a particular obstacle course
may be easier in one direction than the other. 

Pygmalion’s environment representation consists of a continuous geometric model as
well as an abstract topological network for route planning. Thus, if repeated attempts to
clear the obstacle fail, then the robot’s executive will temporarily cut the topological con-
nection between the two appropriate nodes and will launch the planner again, generating a
new set of waypoints to the goal. Next, using recent laser rangefinding data as a type of
local map (see figure 6.25), a geometric path planner will generate a path from the robot’s
current position to the next waypoint.

In summary, episodic planning architectures are extremely popular in the mobile robot
research community. They combine the versatility of responding to environmental changes
and new goals with the fast response of a tactical executive tier and behaviors that control
real-time robot motion. As shown in figure 6.25, it is common in such systems to have both
a short-term local map and a more strategic global map. Part of the executive’s job in such
dual representations is to decide when and if new information integrated into the local map
is sufficiently nontransient to be copied into the global knowledge base.

6.3.4.3   Integrated planning and execution
Of course, the architecture of a commercial mobile robot must include more functionality
than just navigation. But limiting this discussion to the question of navigation architectures
leads to what may at first seem a degenerate solution.

The architecture shown in figure 6.26 may look similar to the off-line planning architec-
ture of figure 6.24, but in fact it is significantly more advanced. In this case, the planner tier
has disappeared because there is no longer a temporal decomposition between the executive

Figure 6.26
An integrated planning and execution architecture in which planning is nothing more than a real-time
execution step (behavior). 
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and the planner. Planning is simply one small part of the executive’s nominal cycle of activ-
ities.

The idea of speeding up planning to the point that its execution time is no longer signif-
icant may seem wishful. However, using specific algorithms in particular environments,
such reductions in the cost of planning have been demonstrated. Consider the work of
Stentz [139]. Stentz designed a mobile robot control architecture for a large off-road vehi-
cle traveling over partially known terrain at high speeds. Using advanced caching tech-
niques from computer science, Stentz optimized a grassfire path-planning algorithm called
D* so that global path planning would be possible within the basic control loop of the exec-
utive.

The result, depicted in figure 6.26, is an architecture in which the local and global rep-
resentations are the same, and in which the executive has all global planning functionality
required for the problem built in. The advantage of this approach is that the robot’s actions
at every cycle are guided by a global path planner, and are therefore optimal in view of all
of the information the robot has gathered. Of course, the method is computationally chal-
lenging and will not be practical in more complex environments until processor speeds
increase even further. It also has basic limits of applicability as the size of the environment
increases, but this has not yet been a barrier when applying this method to real-world sce-
nario sizes.

The somewhat recent success of an integrated planning and execution method, D*,
underlines the fact that the designer of a robot navigation architecture must consider not
only all aspects of the robot and its environmental task but must also consider the state of
processor and memory technology. We expect that mobile robot architecture design is sure
to remain an active area of innovation for years to come. All forms of technological
progress, from robot sensor inventions to microprocessor speed increases, are likely to cat-
alyze new revolutions in mobile robot architecture as previously unimaginable tactics
become realities.
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